

Ruhr-Universität Bochum

Fakultät für Bauingenieurwesen Institut für Straßenwesen und Eisenbahnbau Prof. Dr.-Ing. Klaus Krass

"Gezielte Herstellung von Brechsand zur Verwendung im Asphalt- und Betonbau"

Schlussbericht

Forschungsstelle:	Institut für Straßenwesen und Eisenbahnbau
	Ruhr-Universität Bochum (RUB)

- Projektleiter: Prof. Dr.-Ing. K. Krass
- Bearbeiter: Dipl.-Ing. H. Trogisch
- Auftraggeber: Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V. (AiF) AiF-Forschungsprojekt-Nr. 12819 N/1

Dieses AIF-Vorhaben ist aus Mitteln des Bundesministeriums für Wirtschaft und Technologie gefördert worden.

Bochum, im März 2003

Zusammenfassung

Zur Zeit werden im Betonbereich von der Naturstein-Industrie ca. 30 Mio. t Betonzuschlag eingesetzt, allerdings fast ausnahmslos nicht im Sandbereich, der in einer üblichen Betonzusammensetzung im Mittel 30 bis 40 % ausmacht. Zur Herstellung von Asphalt werden pro Jahr über 20 Mio t Sande benötigt. Der Anteil der Brechsande liegt z. Zt. bei etwa 50 %. Er ließe sich – geeignete Qualität vorausgesetzt – deutlich steigern. Auf Grundlage dieser Überlegungen wurden durch verschiedene Aufbereitungsmechanismen mit einem Vertikalprallbrecher aus drei Gesteinsprovenienzen (Grauwacke, Basalt und Kalkstein) jeweils fünf granulometrisch unterscheidbare Brechsande hergestellt und gekennzeichnet. Anschließend wurden die Einflüsse der Differenzen der Brechsandgranulometrien auf die Eigenschaften der damit hergestellten Asphalte und Betone analysiert. Neben mechanischen Sandprüfungen wurden photooptische Untersuchungen zur Kennzeichnung der Sande herangezogen, wobei die statistischen Längen von Partikelprojektionsflächen bestimmt wurden. Neben der Ermittlung der volumetrischen Korngrößenverteilungen wurden durch Kombination dieser Längen Partikelformparameter (= Kornformparameter) definiert, um damit verschiedene Formeigenschaften der Brechsande beschreiben zu können. Mit den verwendeten Kornformparametern sollten Formeigenschaften wie Kreisförmigkeit und Gedrungenheit beschrieben werden.

Die photooptische Untersuchungsmethode lieferte deutlich bessere Ergebnisse zur Prognostizierung der Asphalteigenschaften als die mechanischen Eigenschaften der Brechsande. Die Untersuchungsergebnisse zeigen, dass eine Variation der Kornform der Brechsande einen größeren Einfluss auf die Asphalteigenschaften ausübt als die Variation der Korngrößenverteilung. Die maximalen Korrelationen zu den Asphalteigenschaften ten werden mit einer Ausnahme ausschließlich durch Kornformparameter erreicht.

Die Untersuchungen ergaben, dass verschiedene Asphalteigenschaften von unterschiedlichen Kornformparametern primär beeinflusst werden. So ist es möglich, Brechsande aus derselben Provenienz durch die photooptisch ermittelten Kornformparameter sinnvoll zu unterscheiden, um dadurch die Auswirkungen auf Asphalteigenschaften beschreiben zu können.

Im Unterschied zu den im Asphalt verwendeten Brechsanden wurden die Sande für die Betonherstellung mit dem produktionsbedingten Überkornanteil und in jeweils verschiedenen Anteilen den Betonrezepturen zugegeben, um dabei eine möglichst ähnliche Korngrößenverteilung wie bei der Standardrezeptur mit Natursand zu erreichen. Eine statistische Auswertung des Zusammenhangs zwischen Sand- und Betoneigenschaften war daher nicht möglich. Der Beton mit Natursand hat erwartungsgemäß das geringste Verdichtungsmaß und damit die günstigste Konsistenz im Vergleich zu allen untersuchten Brechsanden. Bei der Verarbeitung der Betone mit Brechsand war auffällig, dass sie ein ausgeprägt thixotropes Verhalten zeigten, so dass sie sich trotz ihrer sehr steifen Konsistenz im Ruhezustand gut verdichten ließen. Die ermittelten Festigkeiten der Betone, die mit Brechsand hergestellt wurden, sind tendenziell höher als die der Betone mit Standardrezeptur. Eine Abhängigkeit der Art der Aufbereitung der Sande von den Frischund Festbetoneigenschaften konnte jedoch statistisch nicht nachgewiesen werden.

Die Erkenntnisse dieser Untersuchungen können bei der Herstellung von Brechsanden für Asphalte dazu verwendet werden, gezielt solche Kornformen für Brechsande herzustellen, die die Asphalteigenschaften insbesondere bezüglich des Verformungswiderstandes positiv beeinflussen. Für den Einsatz in Beton sind die Ergebnisse noch nicht so eindeutig. Insgesamt wird durch die Untersuchungen ein Weg aufgezeigt, wie die Qualität von Brechsanden gesteigert und damit auch die Wettbewerbssituation der Steinbruchbetreiber (kmU) verbessert werden kann.

Das Ziel des Forschungsvorhabens wurde erreicht.

Vorwort

Das vorliegende Vorhaben wurde von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V. (AiF) mit finanziellen Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Die Initiative zu dieser Arbeit ging vom Bundesverband Naturstein-Industrie aus, über dessen Forschungsgemeinschaft Naturstein-Industrie e.V. der Antrag bei der AiF eingereicht worden war.

Die Betonuntersuchungen wurden im Forschungsinstitut der Forschungsgemeinschaft Eisenhüttenschlacken durchgeführt.

Allen Beteiligten an diese Vorhaben sei dafür herzlich gedankt.

Prof. Dr.-Ing. Prof. Klaus Krass

Inhaltsverzeichnis

1	Einleitung	1
1.1	Problemstellung	1
1.2	Zielsetzung	1
2	Untersuchungsprogramm	3
3	Untersuchungsmaterialien	5
3.1	Verwendete Gesteine	5
3.2	Asphaltkomponenten und Asphaltrezepturen	8
3.3	Betonkomponenten und Betonzepturen	12
4	Untersuchungsverfahren	20
4.1	Mechanische Prüfungen der Sande	20
4.2	Photooptische Untersuchungen an den Sanden	20
4.3	Untersuchungen an Asphalt	24
4.4	Untersuchungen an Beton	25
5	Statistische Methoden zur Beurteilung der Ergebnisse	26
6	Ergebnisse der Sanduntersuchungen	28
6.1	Ergebnisse der Untersuchungen an den Sanden zur Verwendung in Asphalt	28
6.1.1	Mechanische Eigenschaften der Sande	28
6.1.2	Ergebnisse der photooptischen Sanduntersuchungen	30
6.2	Ergebnisse der Untersuchungen an den Sanden zur Verwendung in Beton	49
6.2.1	Mechanische Eigenschaften des Natursandes sowie der Kalkstein- und Basaltbrechsande	49
6.2.2	Ergebnisse der photooptischen Untersuchungen	52
7	Ergebnisse der Asphaltuntersuchungen	67
7.1	Hohlraumgehalt und fiktiver Hohlraumgehalt	67
7.2	Verformungswiderstand	71
7.3	Verdichtungswiderstand der Asphalte	74
7.4	Spaltzugfestigkeitsabfall der Asphaltbetone	76
7.5	Stabilität und Fließwert der Asphaltbetone	78
8	Ergebnisse der Betonuntersuchungen	81
8.1	Frischbetoneigenschaften	81
8.2	Festbetoneigenschaften	82
9	Funktionaler Zusammenhang zwischen Brechsand- und Asphalteigenschaften	84
9.1	Fiktiver Hohlraumgehalt	84

9.2	Verformungswiderstand	88
9.2.1	Dehnung nach 10 kLW bzw. 4 kLW	88
9.2.2	Dehnungsrate der Asphalte	93
9.3	Verdichtungswiderstand der Asphalte	97
9.4	Spaltzugfestigkeitsabfall der Asphalte	102
9.5	Stabilität und Fließwert der Asphaltbetone	106
10	Beurteilung der Ergebnisse	109
10.1	Grauwacke- und Basaltbrechsande zur Verwendung in Asphalt	109
10.2	Asphalteigenschaften und funktionale Zusammenhänge mit den Brechsandeigenschaften	110
10.3	Natursand, Kalkstein- und Basaltbrechsande zur Verwendung in Beton	113
10.4	Auswirkungen der Sande in Beton	115
11	Schlussfolgerungen und Ausblick	119
12	Zusammenfassung	121
13	Literatur	123
14	Verzeichnisse	126
14.1	Tabellenverzeichnis	126
14.2	Abbildungsverzeichnis	129
Anhä	nge	133

δ	Korngrößendefinition
ε _w *	Dehnungsrate (einaxialer Druckschwellversuch)
ε4, ε ₁₀	Dehnung nach 4 bzw. 10 kLW
AB	Asphaltbeton
A _{KM}	Abrieb in der Kugelmühle
ANOVA	Rechenalgorithmus zur Bestimmung eines Korrelationskoeffizienten
CCD	Charge Couple Device
CPA	Computergestützte Partikelanalyse
d _Ä	Äquivalentdurchmesser
df	Anzahl der Freiheitsgrade
d _F	Feret-Durchmesser
F	F-Wert der F-Verteilung
F_{Kon}	Konkavität
F_{Kub}	Kubizität
F_{S}	Sphärizität
FG	Feinheitsgrad
FZ	Fließzahl
G	Gestein
kLW	Kilo-Lastwechsel (= 1000 Lastwechsel)
MG	Mischgut
n	Kornklasse
pho	photooptisch
QKA	Kornanzahlquotient
r	Korrelationskoeffizient
r _p	partieller Korrelationskoeffizient
RRSBn	Streuungsparameter der RRSB-Verteilung
sig T	Fehlersignifikanz
SMA	Splittmastixasphalt
SZA	Spaltzugfestigkeitsabfall
Var	Regressionsvariable
Var _{abh}	abhängige Regressionsvariable
Var _k	Kontrollvariable (bei partieller Korrelationsanalyse)
VPB	Vertikalprallbrecher

1 Einleitung

1.1 Problemstellung

Asphalt- und Betonindustrie benötigen große Mengen an hochwertigem Brechsand und Splitt. Für anspruchsvolle Einsatzgebiete, insbesondere im Asphalt, werden Edelbrechsande 0/2 mm und Edelsplitte gefordert.

Zur Zeit werden von der Naturstein-Industrie ca. 30 Mio. t Betonzuschlag geliefert, allerdings fast ausnahmslos nicht im Sandbereich, der in einer üblichen Betonzusammensetzung im Mittel 30 bis 40 % ausmacht. Zur Herstellung von Asphalt werden pro Jahr über 20 Mio t Sande benötigt. Der Anteil der Brechsande liegt z. Zt. bei etwa 50 %.

Anforderungen an die Granulometrie von Sanden gibt es vor allem bezüglich ihres Überkornanteils [1] [2]. Obwohl in der Vergangenheit immer wieder Anstrengungen unternommen wurden, gibt es bisher keine Anforderungen an die Kornform von Brechsanden [3] [4].

Splitte werden immer noch überwiegend unter Verwendung von Kegelbrechern hergestellt [5]. Dabei wird das aufzubereitende Material bei fester Brechereinstellung zwischen Brechmantel und Brechkegel zerquetscht, wodurch sich Kornformen erzielen lassen, die für die Verwendung im Asphalt- und Betonbau geeignet sind. Dies trifft aber zum großen Teil nur für die Körnungen zu, die bezüglich ihrer Größe nahe der Brechereinstellung liegen. Je größer der Unterschied zwischen Korngröße und Brechereinstellung wird, desto schlechter (plattiger bzw. stengeliger) werden die Kornformen und desto unbrauchbarer die anfallenden Körnungen. Legt man also Wert auf die Herstellung eines hochwertigen Splitts, um die vorgenannten Anforderungen einzuhalten, so weisen die dann anfallenden feinkörnigen Brechsande unbefriedigende Kornformen auf, oft verbunden mit schwankenden Fülleranteilen. Das Ergebnis sind große Mengen an feinkörnigen Mineralstoffen (Brechsanden), die kaum oder gar nicht verwertbar sind. Es muss daher ein Ziel sein, die anfallenden Gesteine in einer Weise aufzubereiten, dass auf der ganzen Bandbreite der üblichen Lieferkörnungen wirtschaftlich und technisch weiterverarbeitbare Produkte entstehen. Dazu ist es aber notwendig, den Einfluss von Kornform und Korngrößenverteilung im Brechsandbereich auf Asphalt- und Betoneigenschaften zu quantifizieren und daraus Zielgrößen zu erarbeiten, die als Grundlage für die Brechsandproduktion verwendet werden können.

1.2 Zielsetzung

Durch verschiedene Aufbereitungsmechanismen sollen granulometrisch zu unterscheidende Brechsande hergestellt werden. Zur gezielten Brechsandherstellung werden heute hauptsächlich folgende Brechwerkzeuge [6] eingesetzt: Kugel- und Stabrohrmühlen-, Hammermühlen und -brecher sowie Rotormühlen und -brecher. Aufgrund des geringeren Verschleißes, kombiniert mit höheren Durchsatzraten und geringerem spezifischen Energieverbrauch, geht der Trend in den Aufbereitungsanlagen immer mehr zum Einsatz von Rotormühlen und -brechern [7]. Daher kamen diese Aufbereitungsmethoden bei diesem Vorhaben in die engere Wahl. Ein zu dieser Gruppe gehörender Brechertyp ist der Vertikalprallbrecher. Für diesen bestehen auch bereits Erfahrungen in der wirtschaftlich sinnvollen Produktion von gedrungenen möglichst kubischen Brechsanden [8] [9]. Die Aufgabe war daher, zunächst Brechsande herzustellen, die eine gewisse Bandbreite ihrer jeweiligen Eigenschaften erwarten lassen. Diese Möglichkeit ist bei einem autogenen Vertikalprallbrecher gegeben [10].

Ziel der anschließenden Untersuchungen war es, auf der einen Seite granulometrische Eigenschaften der untersuchten Brechsande zu finden, die es ermöglichen, den Natursand in Standardbetonrezepturen durch diese zu ersetzen, ohne dabei einen Qualitätsverlust der hergestellten Betone oder eine Verteuerung durch höhere Zementgehalte in Kauf nehmen zu müssen. Auf der anderen Seite sollte der Einfluss der granulomerischen Eigenschaften der untersuchten Brechsande insbesondere auf die Asphalteigenschaft Verformungswiderstand quantifiziert werden.

2 Untersuchungsprogramm

Im Fließschema in **Abbildung 2-1** wird der Ablauf der durchgeführten Untersuchungen dargestellt.

Im ersten Schritt erfolgte die Aufbereitung der für die Untersuchungen ausgewählten Mineralstoffe. Daran schlossen sich die Untersuchungen der hergestellten Mineralstoffkörnungen an, die sich vertieft mit der Kennzeichnung der untersuchten Brechsande befassten.

Bei den anwendungsbezogenen Untersuchungen erfolgte ein unterschiedliches Vorgehen bei Asphalt und Beton. Dabei wurden die Betonuntersuchungen vom Forschungsinstitut der Forschungsgemeinschaft Eisenhüttenschlacken durchgeführt.

Die Untersuchungen an den Brechsanden für die Asphaltherstellung erfolgten an einer definierten Kornklasse. Darüber hinaus wurde jeder Asphaltart der gleiche Massenanteil an Brechsand zugegeben.

Die Brechsande für die Betonherstellung wurden mit dem produktionsbedingten Überkornanteil und in jeweils verschiedenen Anteilen den Betonrezepturen zugegeben. Dabei sollte eine möglichst ähnliche Kornverteilung wie bei der Standardrezeptur erreicht werden.

Aus diesen Gründen erfolgte die numerische Auswertung der Zusammenhänge zwischen Sand und anwendungsbezogenen Untersuchungen nur für die Asphaltuntersuchungen. Die Beurteilung der Zusammenhänge zwischen Beton- und Sanduntersuchungen erfolgte qualitativ.

Abbildung 2-1: Fließschema der durchgeführten Untersuchungen

3 Untersuchungsmaterialien

3.1 Verwendete Gesteine

Als Ausgangsmaterial für die Untersuchungen wurden bautechnisch relevante Vertreter der magmatischen und sedimentären Gesteine verwendet. Als magmatisches Gestein wurden Basalt und als sedimentäre Gesteine Grauwacke für den Einsatz in Asphalt sowie Kalkstein als Betonzuschlag gewählt. Als Aufgabegut wurde die Körnung 8/16 mm, die meistens bei der Aufbereitung im Überschuss anfällt, verwendet.

Durch Variation der Geräteparameter des Vertikalprallbrechers wurden acht granulometrisch zu unterscheidende Brechsande hergestellt. Variiert wurden die Siebweite am Brecherausgang (Trennschnitt) und der Anteil des Kaskadenstroms.

Durch diese Variationsmöglichkeiten ist die Zusammensetzung der Kornwolke im Brechraum steuerbar, denn diese hat entscheidenden Einfluss auf die Qualität des Endprodukts. Große, mit hoher kinetischer Energie geladene Körner teilen beim Zusammenstoß mit kleineren, energieärmeren Körnern schwere Schläge aus, die eine schnelle Zerkleinerung zur Folge haben. Die kleinsten Körner und der Staub bewegen sich trotz sehr geringer kinetischer Energie sehr schnell fort und wirken wie ein Sandstrahlgebläse auf alles, was mit ihnen in Berührung kommt (Sandstrahlung, Rollierung).

Durch die Veränderung des Anteils des Kaskadenstroms und des Trennschnitts werden die Korngrößenverteilung und die Kornform der Kornwolke im Brechraum und die des Endproduktes beeinflusst.

Mit der Zielsetzung, eine möglichst große Bandbreite an Brechsandeigenschaften zu erhalten, erfolgte die Brechereinstellung durch Variation

- des Trennschnittes (2 mm; 8 mm) und
- des Kaskadenstroms (0 M.-%; 40 M.-%).

Der Trennschnitt bei 2 mm erfolgte durch einen Siebboden mit einer Maschenweite von $2,5 \times 5$ mm, der bei 8 mm mit 9×9 mm. Kleinere Siebmaschenweiten führten unmittelbar zum Zusetzen des Siebes.

Durch eine Änderung der Rotorgeschwindigkeit ändert sich die Rotoraustrittsgeschwindigkeit der Gesteinskörner. Die Korngrößenreduzierung des Brecherdurchsatzes steigt mit zunehmender Rotorgeschwindigkeit.

Die Rotorgeschwindigkeit wird gesteinsspezifisch konstant gehalten, da sie maßgeblich die Zerkleinerungswirkung insgesamt bestimmt, was nicht Gegenstand der Untersuchungen ist. Sie wurde so eingestellt, dass sich ein gesteinsspezifisch optimaler Durchsatz des Brechers einstellte. In **Tabelle 3-1** sind die Durchsätze und die dabei beanspruchte Stromstärke des Brechers im Kreislauf zusammengefasst.

Gestein		Grauv	vacke			Bas	salt			Kalk	stein	
Bezeichnung	G02K	G02oK	G08K	G08oK	B02K	B02oK	B08K	B08oK	K02K	K02oK	K08K	K08oK
Brecher- aufgabe [t/h]	2	3	4,5	4	2,5	2,5	3,5	3,5	5	4	4	4,5
Rückführ- strom [t/h]	18	11,5	8,5	4	19,5	9,5	8,5	5,5	13	6	7	4,5
End- produkt [t/h]	2	3	4,5	4	2,5	2,5	3,5	3,5	5	4	4	4,5
Stromauf- nahme [A]	23	24	23	20	27	23	20	22	19,5	24	15	16

Tabelle 3-1: Leistung der Brechsandaufbereitung mit Vertikalprallbrecher undStromaufnahme

Außerdem wurde für die Gesteinsarten Grauwacke und Basalt jeweils ein Brechsand konventionell mit Kegelbrecher, für Kalkstein allein durch Klassierung, hergestellt. Somit standen jeweils fünf in der Granulometrie unterscheidbare Grauwacke-, Basaltund Kalksteinbrechsande zur Verfügung. Die Aufbereitung von der Vorbrechstufe bis zur Bereitstellung zur Siebung wird im Folgenden erläutert und in **Abbildung 3-1** graphisch dargestellt: Die Eingabe in eine Aufbereitungsstufe entsteht durch die Ausgabe aus der vorangegangenen Stufe zuzüglich einer Absiebung des Materials.

Jeweils ein Edelbrechsand aus Grauwacke- und Basaltaufbereitung wurde aus Klassierungsstufe 1 (Grauwacke) bzw. Klassierungsstufe 2 (Basalt) erhalten. Die Brechsande erhielten die Bezeichnung G02 (Grauwackebrechsand ohne 5. Brechstufe) und B02 (Basaltbrechsand ohne 4. Brechstufe). Der Brechsand K02 entstand durch Klassierung des Steinbruchmaterials < 100 mm. Weitere acht Brechsande entstanden durch Hinzuschalten des autogenen Vertikalprallbrechers als vierte bzw. fünfte Brechstufe. Die Sande wurden dann entsprechend der Geräteparameter, die zu ihrer Herstellung verwendet wurden, bezeichnet.

In **Tabelle 3-2** sind die Aufbereitungsbereitungsmechanismen, die zur Herstellung der Brechsande führten, aufgeführt und den entsprechenden Brechsandbezeichnungen zugeordnet.

Abbildung 3-1: Aufbereitungsstufen der Brechsandherstellung

Gestein	Grauwacke					
Bezeichnung	G02	G02K	G02oK	G08K	G08oK	
Kegelbrecher		х				
	Ohne Kaskade			x		Х
	40 M% Kaskade		x		Х	
VP-Brecher	Trennschnitt: 2 mm		x	x		
	Trennschnitt: 8 mm				Х	X
Gestein				Basalt		
Bezeichnung		B02	B02K	B02oK	B08K	B08oK
Kegelbrecher		х				X
	Ohne Kaskade			Х		
	40 M% Kaskade		x		Х	
VP-Brecher	Trennschnitt: 2 mm		X	x		
	Trennschnitt: 8 mm				Х	
Gestein		Kalkstein				
Bezeichnung		K02	K02K	K02oK	K08K	K08oK
Klassierung		х				
	Ohne Kaskade			X		X
	40 M% Kaskade		Х		Х	
VP-Brecher	Trennschnitt: 2 mm		х	X		
	Trennschnitt: 8 mm				Х	X

Tabelle 3-2: Letzte Brechstufe zur Herstellung der Brechsande

3.2 Asphaltkomponenten und Asphaltrezepturen

Im Splittbereich wurde bei den Asphalten immer Basaltedelsplitt nach TL Min-StB [2] in den Lieferkörnungen 2/5, 5/8 und 8/11 mm verwendet. Der Gewinnungsort des Basaltedelsplitts und des Basaltedelbrechsands ist identisch. Die Lieferkörnungen wurden vollständig mittels Nasssiebung von Über- und Unterkorn befreit.

Um die Variation der Brechsande isoliert betrachten zu können, wurde in allen Asphalten Kalksteinmehl als Fremdfüller im Bereich < 0,09 mm eingesetzt. Die Eigenschaften des Kalksteinmehls sind in **Tabelle 3-3** zusammengefasst.

Als Asphalte wurden die häufig verwendeten Asphaltarten Asphaltbeton 0/11 S und Splittmastixasphalt 0/11 S verwendet. Die Mischgutzusammensetzung erfolgte jeweils entsprechend den Vorgaben der ZTV Asphalt-StB [11]. Dabei war das Merkblatt für Eignungsprüfungen an Asphalt [12] zu beachten. Dieses sieht vor, die Mineralstoffe nach volumetrischen Gesichtspunkten zusammenzusetzen, wenn sich die Rohdichten der am Mischgut beteiligten Mineralstoffe wesentlich voneinander unterscheiden. Gemäß ZTV Asphalt-StB kann der Bindemittelgehalt gegenüber den darin vorgeschriebenen Grenzwerten reduziert werden, wenn die Rohdichte des Mineralstoffgemisches den Wert von 2,8 g/cm³ überschreitet. Die Mischgutzusammensetzung konnte also volumetrisch vorgenommen werden.

Merkmal		Dimension	Eigenschaft des verwendeten Füllers
Rohdichte		[g/cm³]	2,757
	< 0,09 mm		92,9
Korngrößenverteilung	< 0,063 mm	[M%]	85,7
	< 0,032 mm		52,4
Hohlraumgehalt nach Rigden		[Vol%]	35,5
Versteifende Eigenschaften	Stabilisierungs- index	[-]	68/32
	∆ R. u. K.	[°C]	18,0
Spezifische Oberfläche nach Blaine		[m²/g]	0,313

 Tabelle 3-3: Eigenschaften des verwendeten Kalksteinmehls

Tabelle 3-4 enthält die für die volumetrische Bestimmung der Mischgutzusammensetzung relevanten gemäß DIN 52102 [13] bestimmten Rohdichten. Die angegebene Rohdichte des Bindemittels entspricht der Herstellerangabe. Neben den Vorgaben der ZTV Asphalt-StB [11] wurde ein möglichst großer Sandgehalt angestrebt, um dessen Einfluss auf die Asphalteigenschaften deutlich zu machen.

Material	Rohdichte [g/cm ³]
Splitt 2/5; 5/8; 8/11 mm aus Basalt	3.050
Brechsand 0,09/2 mm aus Basalt	3,000
Brechsand 0,09/2 mm aus Grauwacke	2,723
Füller (Kalksteinmehl)	2,757
Mineralstoffgemisch für Asphaltbeton mit Grauwackebrechsand	2,890
Mineralstoffgemisch für Asphaltbeton mit Basaltbrechsand	3,021
Mineralstoffgemisch für Splittmastix- asphalt mit Grauwackebrechsand	2,965
Mineralstoffgemisch für Splittmastix- asphalt mit Basaltbrechsand	3,021
Bitumen 50/70	1,022
Stabilisierender Zusatz (Zellstoff)	Wird dem Bindemittel zugerechnet

Tabelle 3-4: Rohdichten der im Asphalt verwendeten Baustoffe

Die volumetrisch berechneten Sieblinien der Mineralstoffgemische für die beiden Asphalte sind in **Tabelle 3-5** angegeben sowie in den **Abbildungen 3-2** und **3-3** graphisch dargestellt. Die gravimetrischen Zugabeanteile der Lieferkörnungen am Mineralstoffgemisch sind in **Tabelle 3-6** aufgeführt.

Kornklasse	Asphaltbeton 0/11 S	Splittmastixasphalt 0/11 S
[mm]	[Vol%]	[Vol%]
< 0,09	9,3	9,3
< 2	50	27
< 5	70	40
< 8	85	60
< 11,2	100	100

Tabelle 3-5: Volumetrisch berechnete Anteile in den Mineralstoffgemischen für
die beiden Asphalte

Tabelle 3-6: Gravimetrische Zugabeanteile in den Mineralstoffgemischen für die beiden Asphalte

	AB 0	/11 S	SMA 0/11 S		
Korn- klasse	mit Grauwacke- Brechsand	mit Basalt- Brechsand	mit Grauwacke- Brechsand	mit Basalt- Brechsand	
mm	M%	M%	M%	M%	
< 0,09	9,5	9,1	9,3	9,1	
0,09/2	37,7	40,4	15,6	17,2	
2/5	20,1	19,2	12,3	12,1	
5/8	15,8	15,1	19,5	19,2	
8/11	16,9	16,2	43,3	42,4	

Die zur Ermittlung des optimalen Bindemittelgehaltes verwendeten Bindemittelgehalte sind **Tabelle 3-7** zu entnehmen. Dem Mischgut für Splittmastixasphalt wurden jeweils 0,3 M.-% Zellstoff als stabilisierender Zusatz hinzu gegeben.

Tabelle 3-7: Gravimetrische Bine	demittelgehalte der Asphalte
----------------------------------	------------------------------

AB 0/11 S mit Grauwacke- Brechsand [M%]	AB 0/11 S mit Basalt- Brechsand [M%]	SMA 0/11 S mit Grauwacke- Brechsand [M%]	SMA 0/11 S mit Basalt- Brechsand [M%]
6,5	6,5	7,0	7,0
5,9	5,9	6,5	6,5
5,6	5,6	6,1	6,0
		5,8	

Abbildung 3-2: Sieblinien der Asphaltbetone 0/11 S

Abbildung 3-3: Sieblinien der Splittmastixasphalte 0/11 S

11

Für die Untersuchungen des Verformungswiderstands und der Spaltzugfestigkeit sowie für die Untersuchungen des Zusammenhangs zwischen Brechsand- und Asphalteigenschaften wurden nur Asphalte mit optimalem Bindemittelgehalt verwendet. Als optimal wurden Bindemittelgehalte interpretiert, wenn durch die Marshall-Verdichtung ein minimaler fiktiver Hohlraumgehalt des Mineralstoffgemisches des Asphaltes erzielt wurde [14] und für die Asphalte die Anforderungen gemäß ZTV Asphalt-StB weitgehend erfüllt waren.

3.3 Betonkomponenten und Betonzepturen

Im Splittbereich der untersuchten Betone wurde der gleiche Basaltedelsplitt wie bei den Asphalten, jedoch in den Lieferkörnungen 2/5, 5/8 und 8/16 mm verwendet. Als Natursand kam ein typischer Rheinsand zur Anwendung.

Um den Einfluss des Feinstanteiles < 0,063 mm auf die zu prüfenden Frisch- und Festbetoneigenschaften konstant zu halten, wurde bei allen Sanden der Anteil < 0,063 mm ausgewaschen, getrocknet und gewogen.

In **Tabelle 3-8** sind die Mehlkorneigenschaften der untersuchten Brechsande zusammengefasst.

Mehlkorn	Rohdichte	Anteil am Sand	Spezif. Oberfläche nach Blaine		
VOII	[g/cm³]	[M%]	[cm²/g]		
NS		0,13	Nicht geprüft		
K02K		11,4	2810		
K02oK		7,5	3083		
K08K	2,669	12,2	2994		
K08oK		16,0	3113		
K02		3,0	3182		
B02K		13,69	2330		
B02oK		16,88	2202		
B08K	3,050	10,92	2064		
B08oK		16,28	2136		
B02		17,89	2211		

Tabelle 3-8: Eigenschaften des verwendeten Mehlkorns

Die Betone wurden gemäß DIN 1045 [15] aus dem Natursand bzw. Brechsand, dem Basaltsplitt, Zement nach DIN EN 197-1 [16] und Wasser sowie Fließmittel hergestellt. Auf den Einsatz von Betonzusatzstoffen, wie Flugaschen oder Gesteinsmehlen zur Optimierung des Mehlkorngehalts der Betone, wurde bewusst verzichtet, um den

Unterschied zwischen Natursand, üblichem Brechsand und optimiertem Brechsand auf die betontechnologischen Eigenschaften nicht zu verwischen.

Für die hergestellten Betone B25 und B55 wurden die in **Tabelle 3-9** aufgeführten Randbedingungen gewählt.

B25	B55
Standardrezeptur auf der Basis von	Standardrezeptur auf der Basis von
Natursand/Splitt, Sieblinie A/B 16	Natursand/Splitt, Sieblinie A/B 16
CEM III/A 32,5	CEM III/A 42,5
Verflüssiger/Fließmittel	Verflüssiger/Fließmittel
Austausch des Natursands im Kornbereich 0/2 mm durch herkömmlichen Brechsand	Austausch des Natursands im Korn- bereich 0/2 mm durch herkömmli- chen Brechsand
Austausch des herkömmlichen Brechsands durch die in der Kornform optimierten Brechsande	Austausch des herkömmlichen Brechsands durch den in der Korn- form optimierten Brechsand

Tabelle 3-9: Allgemeine Randbedingungen für die Herstellung der Betone

Auf der Grundlage dieser Vorgaben wurden die in **Tabelle 3-10** beschriebenen Betonrezepturen für die Vergleichsbetone verwendet.

Die Sieblinie entspricht unter Verwendung dieser Gesteinskörnungen dem Bereich A/B 16. Ursprünglich war vorgesehen, den Natursand zu gleichen Anteilen durch den zu prüfenden Brechsand auszutauschen. Die Korngrößenverteilung der Brechsande zeigte aber teilweise gegenüber dem Natursand so große Abweichungen, dass zur Einhaltung der Sieblinie A/B 16 Korrekturen vorgenommen werden mussten. Die mit dem Vertikalprallbrecher hergestellten Brechsande wiesen sehr hohe Anteile an Überkorn auf, insbesondere bei den Brechsanden, die ohne Kaskade hergestellt wurden. Im ungünstigsten Fall betrug der Anteil an Überkorn 30 M.-%. Der Anteil an Überkorn im Brechsand wurde daher nicht abgesiebt, sondern bei der Erstellung der Sieblinie berücksichtigt.

Dem Natursand am nächsten kommt hinsichtlich der Kornzusammensetzung der Brechsand aus devonischem Kalkstein herkömmlicher Aufbereitung.

Für den Wasseranspruch und die Verarbeitbarkeit ist neben der Kornform der Anteil an Mehlkorn im Anteil 0/2 mm von entscheidender Bedeutung. Um den Einfluss des Mehlkorngehalts auf die zu prüfenden Frisch- und Festbetoneigenschaften konstant zu halten, wurde bei allen Sanden der Anteil < 63 µm ausgewaschen, getrocknet und gewogen. Diese Ergebnisse sind Abschnitt 3.2 zu entnehmen. Erwartungsgemäß sind die Gehalte an Mehlkorn in den Brechsanden höher als in dem durch Nassbaggerung gewonnenen Natursand. Beim konventionell hergestellten Basaltbrechsand liegen bereits sehr hohe Anteile an Feinanteilen vor. Im Gegensatz zum Kalkstein führt daher die Anwendung des Vertikalprallbrechers beim Basalt zu keiner weiteren Erhöhung des Anteils < 63 µm, im Gegenteil, die Gehalte sind bis zu 7 M.-% niedriger.

Bestandteile		B25	B55
CEM III/A 32,5	kg/m³	300	-
CEM III/A 42,5	kg/m³	-	380
Natursand	kg/m³	611,4	584,6
Basaltsplitt 2/5	kg/m³	340,7	325,7
Basaltsplitt 5/8	kg/m³	283,9	271,4
Basaltsplitt 8/16	kg/m³	662,4	633,3
Σ Gesteinskörnung	kg/m³	1898,4	1815,0
Wasser	kg/m³	165	170
w/z-Wert		0,55	0,45
Fließmittel	M%	0,45	0,45

Da der Feinanteil im Zuschlag in allen Rezepturen konstant bleiben sollte, wurde allen Brechsanden die im Natursand ermittelte Menge wieder zugesetzt. Die Betonrezepturen für alle B25 mit gleichen Anteilen < 63 µm enthält **Tabelle 3-11**.

Zusätzlich zum Untersuchungsprogramm wurden zwei Betone mit den Sanden B02oK und K08K im Originalzustand hergestellt, um die Auswirkungen der hohen Feinanteile in diesen Brechsanden auf die Betoneigenschaften zu untersuchen (s. **Tabelle 3-12**).

Zur Verringerung des Untersuchungsaufwands wurden nicht alle optimierten Brechsande, die durch die Brechversuche hergestellt wurden, in die Betonversuche einbezogen. Für den B55 erfolgte dies nur mit drei Brechsanden, siehe **Tabelle 3-13**, da erwartet wurde, dass sich die Unterschiede im Verarbeitungsverhalten aufgrund des höheren Zementgehalts bei diesem Beton nicht so stark auswirken wie beim B25.

	~~~~		~-								
Sandbezeichnung		K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
CEM III/A 32,5	kg/m³					3(	00				
Brechsand	kg/m³	706,6	694,0	706,6	694,0	706,6	604,8	719,2	586,7	756,0	473,2
Basaltsplitt 2/5	kg/m³	283,9	283,9	283,9	189,3	283,9	302,4	189,3	378,5	189,0	378,5
Basaltsplitt 5/8	kg/m³	378,5	378,5	378,5	473,2	378,5	415,8	283,9	359,6	283,5	378,5
Basaltsplitt 8/16	kg/m³	567,8	567,8	567,8	567,8	567,8	567,0	700,3	567,8	661,5	662,4
Σ Gesteinskörnung	kg/m³	1936,8	1924,2	1936,8	1924,3	1936,8	1890,0	1892,7	1892,6	1890,0	1892,6
Wasser	kg/m³					16	35				
w/z-Wert						0,	55				
Fließmittel	M%					0,4	45				

Tabelle 3-11: Betonrezepturen für B25

Sandbezeichnung		B02oK	K08K
CEM III/A 32,5	kg/m³	30	00
Brechsand	kg/m³	719,2	706,6
Basaltsplitt 2/5	kg/m³	189,3	283,9
Basaltsplitt 5/8	kg/m³	283,9	378,5
Basaltsplitt 8/16	kg/m³	700,3	567,8
Σ Gesteinskörnung	kg/m³	1892,7	1936,8
Wasser	kg/m³	16	65
w/z-Wert	-	0,	55
Fließmittel	%	0,4	45

Tabelle 3-12: Zusätzliche Betonrezepturen für B25

Tabelle 3-13: Betonrezepturen für B55

Sandbezeichnung		K02oK	B02	B02oK				
CEM III/A 42,5	kg/m³		380					
Brechsand	kg/m³	663,5	452,4	561,0				
Basaltsplitt 2/5	kg/m³	271,4	361,9	361,9				
Basaltsplitt 5/8	kg/m³	361,9	361,9	343,8				
Basaltsplitt 8/16	kg/m³	542,8	542,8 633,3					
Σ Gesteinskörnung	kg/m³	1839,6	1809,5	1809,5				
Wasser	kg/m³		170					
w/z-Wert	-		0,45					
Fließmittel	%		0,45					

Im Folgenden sind beispielhaft fünf Sieblinien von Betonen B25 wiedergegeben. Die übrigen Sieblinien entsprechen in etwa den Beispielen in den **Abbildungen 3-4** und **3-5**, so dass auf ihre Wiedergabe verzichtet werden kann.

**Abbildung 3-4** zeigt die Sieblinie unter Verwendung von Natursand. Sie liegt, wie angestrebt, im Bereich zwischen A und B. Aufgrund des niedrigen Feinanteils liegt diese Sieblinie bei der Siebweite 0,125 allerdings im unteren Bereich. Die Sieblinie der Gesteinskörnung mit B02, also dem Basaltbrechsand konventioneller Aufbereitung, liegt ebenfalls im Bereich zwischen A und B (**Abbildung 3-5**), bei der Siebweite 0,25 mm aber bereits auf der Grenzlinie zwischen B und C und bei 0,125 mm oberhalb von B. Aufgrund des hohen Gehalts an Feinanteilen (17,9 M.-% < 63  $\mu$ m) ist dies erklärlich.



Abbildung 3-4: Sieblinie mit Natursand



#### Abbildung 3-5: Sieblinie mit B02

Eine weitere Auswaschung oder Absiebung von Feinanteilen aus dem Basaltbrechsand würde aber die Vergleichbarkeit der Ergebnisse beeinträchtigen.

Auch bei den Sieblinien mit Basaltbrechsanden aus dem Vertikalprallbrecher liegen die Werte für den Siebdurchgang bei 0,25 mm im Grenzbereich zwischen B und C,



für 0,125 mm bereits zwischen B und C. **Abbildung 3-6** zeigt dies beispielhaft für die Sieblinie mit B08KoK.

Abbildung 3-6: Sieblinie mit B08oK

Der Kalksteinbrechsand K02 aus konventioneller Herstellung besitzt mit nur 2 M.-% des Anteils < 0,63  $\mu$ m einen dem Natursand vergleichbaren niedrigen Gehalt. Dem entsprechend sind auch die Sieblinien im Feinbereich nahezu identisch, siehe **Abbildung 3-7**.



Abbildung 3-7: Sieblinie mit K02

Durch die Herstellung im Vertikalprallbrecher steigt der Anteil < 63 µm auch im Kalksteinbrechsand sehr stark an, so dass der Kurvenverlauf der Sieblinien mit diesen Brechsanden weitgehend denen der Sieblinien mit Basaltbrechsand gleicht, wie das Beispiel in **Abbildung 3-8** für K08oK zeigt.



Abbildung 3-8: Sieblinie mit K08oK

#### 4 Untersuchungsverfahren

#### 4.1 Mechanische Prüfungen der Sande

Die Ermittlung der **Fließzahl** sowie des **Abriebes** der Brechsande in der Kugelmühle erfolgte gemäß TP Min-StB Teil 3.7.2 [17] bzw. Teil 5.4.2 [18].

Die **Korngrößenverteilung** wurde gemäß TP Min-StB Teil 6.3.2 [19] bestimmt, aus der die Gleichförmigkeit D25/D75 nach Gleichung **(4-1)** berechnet wurde:

 $D25/D75 = \frac{\text{Quadratloch} - \text{oder Maschenweite des Siebes bei D} = 25 \text{ M}. -\%}{\text{Quadratloch} - \text{oder Maschenweite des Siebes bei D} = 75 \text{ M}. -\%}$ (4-1)

#### 4.2 Photooptische Untersuchungen an den Sanden

Die photooptischen Prüfungen wurden mit einer computergestützten Partikelanalyse durchgeführt. Dabei wird von zweidimensionalen Strukturen auf dreidimensionale ohne wesentlichen Informationsverlust geschlossen.

Zugrunde gelegt wird die Annahme, dass sich ein zu untersuchendes Partikel bei genügend großer Anzahl der Einzeluntersuchungen in jeder denkbaren Richtung aufgenommen werden kann. Den empirisch geführten Beweis dazu hat DOWDES-WELL [20] geliefert. Er hat sich anlässlich der Fourier-Analyse von Quarzsanden mit diesem Thema befasst und eine Quarzsandprobe aus um 50° differierenden Winkeln aufgenommen. Die auf unterschiedlichen Aufnahmewinkeln beruhenden Fourier-Analysen weisen eine große Ähnlichkeit der berechneten Koeffizienten auf. Das Messprinzip der photooptischen Partikelanalyse zeigt **Abbildung 4-1**.

Zusammenballungen im zu analysierenden Aufgabegut werden auf der Dosierschwingrinne gelöst, so dass beim anschließenden freien Fall explizit Einzelteilchen von der hier dargestellten CCD-Zeilenkamera erfasst werden (CCD: Charge Coupled Device). Die in digitaler Form vorliegenden Messdaten werden an einen angeschlossenen PC weitergeleitet und sind dort unmittelbar einer Analyse zugänglich. Beispielsweise kann die Einstellung der Dosierschwingrinne korrigiert werden, wenn auf der Bildschirmprojektion Agglomerationen von Teilchen zu beobachten sind. Eine Reihe von Auswertungen liegt direkt nach erfolgter Messung vor, d. h., wenn das gesamte Aufgabegut den Raum zwischen Lichtquelle und CCD-Kamera passiert hat. Die ermittelte Anzahl- oder Volumenverteilung kann wahlweise auf verschiedenen Partikelgrößendefinitionen (statistischen Längen) oder auf dem Durchmesser des flächenäquivalenten Kreises basieren. Die Auswertung der Partikelprojektionsform (in dieser Arbeit: Sphärizität, Kubizität, Martin-Durchmesser, Maximale Sehne) werden dann zeitversetzt zur Echtzeitmessung durchgeführt.



Abbildung 4-1: Messprinzip eines CPA-Gerätes mit CCD-Zeilenkamera [21]

Ein den Raum zwischen Lichtquelle und CCD-Zeilenkamera im freien Fall durchquerendes Partikel wird von dieser als Reihe aufeinander folgender "Linien" erfasst. Aus diesen "Linien" wird das Projektionsbild der Partikel konstruiert. Für solide Messungen, das sind solche, bei denen je gemessenes Partikel laut Hersteller mindestens 10 Bildpunkte (Pixel) als Grundlage der Gestaltrekonstruktion vorliegen, ist bei Zeilenkameras mit einem Dynamikbereich von ungefähr 100 zu rechnen. Der Dynamikbereich gibt das Verhältnis von Messober- zu Messuntergrenze an. Bei der CPA-Analyse der in dieser Arbeit untersuchten Sande wurde ein Messbereich mit einer Pixelgröße von 50  $\mu$ m gewählt. Ein Pixel wird ab einer Überdeckung von 50 % registriert. Die kleinste berücksichtigte statistische Länge innerhalb der Kornformanalyse wurde zu 315  $\mu$ m gewählt. Bei einem geschätzten Kubizitätswert der Analysesande von 1,5 würde dann die Kornformberechnung anhand von ca. 30 Pixeln stattfinden.

Zur Überprüfung der Reproduzierbarkeit der photooptisch erlangten Ergebnisse wurde die Korngrößenverteilungsanalyse für die Korngrößendefinition "Äquivalentdurchmesser" dreifach durchgeführt. Die größte Spannweite zwischen den drei Analyseergebnissen ergibt  $d_r = 0.3$  Vol.-%.

In **Abbildung 4-2** sind die in den photooptischen Untersuchungen verwendeten statistischen Partikeldurchmesser und der Durchmesser nach Nassenstein graphisch erläutert. Die Pfeile mit der Bezeichnung "M" zeigen die Messrichtung an.



#### Abbildung 4-2: Statistische Längen im Vergleich

Die Sphärizität  $F_{s,\delta,n}$  entspricht dem Kehrwert des von COX [22] formulierten Formfaktors. Sie entspricht auch dem in Gleichung (4-2) angegebenen Größenverhältnis:

$$F_{S,\delta,n} = \frac{\text{Umfang der Partikelprojektion}}{\text{Umfang eines Kreises gleicher Fläche}}$$
(4-2)

mit:

 $\delta$  = Partikelgrößendefinition (F für Feret-Durchmesser, Ä für Äquivalentdurchmesser) n = Berücksichtigte Partikelgrößenklasse (nur für in den Asphalten verwendeten Brechsande)

S = Sphärizität

Die bei der Sphärizität berücksichtigten Partikelgrößenklassen sind in Tabelle 4-1 angegeben.

Partikel-		Partikelgröße	nklasse [mm]	
größendefinition	n = 1	n = 2	n = 3	n = 4
d _F , d _Ä	2,5 - 1,0	1,0 - 0,5	0,5 - 0,315	-

Die Kubizität F_{Kub,δ,n} entspricht der Beziehung in Gleichung (4-3). Untersuchungen auf der Grundlage dieser Beziehung enthält [23].

$$F_{Kub,\delta,n} = \frac{Feret - Durchmesser}{Maximale Sehne}$$
(4-3)

Die bei der Kubizität berücksichtigten Partikelgrößenklassen enthält Tabelle 4-2.

Partikel-		Partikelgröße	nklasse [mm]	
größendefinition	n = 1	n = 2	n = 3	n = 4
d _F	2,5 - 0,71	0,71 - 0,5	0,5 - 0,4	0,4 - 0,315
d _Ä	2,5 - 2,0	2,0 - 1,0	1,0 - 0,5	0,5 - 0,315

Die **Konkavität**  $F_{Kon,\delta,n}$  entspricht dem Kehrwert des von CHURCH [24] formulierten Formfaktors. Sie entspricht auch dem in Gleichung (4-4) angegebenen Größenverhältnis:

$$F_{Kon,\delta,n} = \frac{Feret - Durchmesser}{Martin - Durchmesser}$$
(4-4)

Die bei der Konkavität berücksichtigten Partikelgrößenklassen sind in **Tabelle 4-3** enthalten.

Partikel-		Partikelgröße	nklasse [mm]	
größendefinition	n = 1	n = 2	n = 3	n = 4
d _F	2,5 - 0,71	0,71 - 0,5	0,5 - 0,315	-
d _Ä	2,5 - 2	2,0 - 1,0	1,0 - 0,4	0,4 - 0,315

Tabelle 4-3: Berücksichtigte Partikelgrößenklassen der Konkavitäten

Die **Korngrößenverteilung** wurde volumetrisch ermittelt. Korngrößendefinitionen sind Feret- und Äquivalentdurchmesser. Die verwendeten Kontrolllängen (entspricht Siebmaschenweite bei Siebböden) sind in **Tabelle 4-4** aufgeführt.

# Tabelle 4-4:Kontrolllängen zur Bestimmung der volumetrischen Korn-<br/>größenverteilung

δ							۲	Contr	olllär	ngen	[mm]						
d _F , d _Ä	5,0	4,0	3,55	3,15	2,5	2,0	1,6	1,0	0,71	0,63	0,5	0,4	0,315	0,25	0,2	0,09	0,063

Der **Parameter RRSBn** ist gleichzusetzen mit dem Streuungsparameter n der RRSB-Verteilungsfunktion (Gleichung **(6-2)**), deren Summe der quadratischen Abstände von der ermittelten Korngrößenverteilung minimal ist.

Der Vergleich der Kornanzahlverteilungen der untersuchten Brechsande zur Verwendung in Asphalt ergab qualitativ auffällige Unterschiede im Verhältnis der Kornklassen 0,2/0,09 mm und 0,09/0,063 mm. Zur quantitativen Unterscheidung der Brechsande anhand dieses Unterschieds wurde der **Kornanzahlverteilungsquotient QKA**_{$\delta$} formuliert. Er ergibt sich aus Gleichung (4-5):

$$QKA_{\delta} = \frac{Kornanzahl in der Kornklasse 0,2/0,09 mm}{Kornanzahl in der Kornklasse 0,09/0,063 mm}$$
(4-5)

Der **Feinheitsgrad**  $FG_{\delta}$  der Brechsande wird in Anlehnung an den Abramschen Feinheitsmodul [25] formuliert. Er wurde nach Gleichung (4-6) ermittelt. Zur Bestimmung der Fläche oberhalb der volumetrischen Korngrößenverteilungslinie wurde das Durchgangsvolumen an 11 Kontrolllängen verwendet.

mit:

D_{ki} = Kontrolllänge in der photooptischen Analyse (vergleichbar mit der Quadratloch- oder Maschenweite von Siebböden)

Die photooptisch ermittelte **Gleichförmigkeit D25/D75** $_{\delta}$  wurde gemäß Gleichung (4-1) berechnet.

#### 4.3 Untersuchungen an Asphalt

Die in diesem Abschnitt beschriebenen Untersuchungsverfahren wurden auf beide untersuchten Asphalte angewandt, lediglich der Marshall-Versuch wurde nur bei Asphaltbeton ausgeführt.

Die zur Prüfung herangezogenen Asphaltprobekörper wurden gemäß DIN 1996-4 [26] hergestellt und danach prüfungsspezifisch vorbereitet. Die Bestimmung der **Dehnungsrate** erfolgte gemäß TP A-StB [27]. Die darin vorgeschlagenen Versuchsparameter wurden übernommen. Zusätzlich zur Dehnungsrate wurde die Dehnung der Asphaltbetone nach 10 kLW bestimmt. Da einige Splittmastixasphalte nach 10 kLW schon deutliche Gefügezerstörungen erlitten hatten, wurde die Dehnung nach 4 kLW als zusätzlicher Parameter gewählt. Die Auswertung erfolgte computergestützt mit Hilfe des mathematischen Ansatzes in [27].

Der **Verdichtungswiderstand** (=,,D-Wert") wurde gemäß Arbeitsanleitung [28] ermittelt. Die im Merkblatt für das Verdichten von Asphalt [29] dokumentierten Erfahrungen mit der Verdichtbarkeit von Asphalt legen nahe, dass der D-Wert sich als Unterscheidungsmerkmal verschiedener Asphalte auch mit einer Verdichtungsarbeit von 100 Verdichtungsschlägen im Marshall-Gerät heranziehen lässt. Aufgrund der damit auch verbundenen Reduzierung des Arbeitsaufwandes wurde der Verdichtungswiderstand bei einer aufgebrachten Verdichtungsarbeit von ca. 2100 Nm (= 100 Schläge) ermittelt. Messung und Auswertung erfolgten auch hier computergestützt.

Die Bestimmung des **Spaltzugfestigkeitsabfalls nach Wasserlagerung** wurde gemäß dem in [30] beschriebenen Verfahren der TU Braunschweig durchgeführt.

Marshall-Stabilität und -Fließwert sowie Dichten und Hohlraumgehalte wurden gemäß DIN 1996 -11 [31] bzw. DIN 1996-7 [32] bestimmt.

#### 4.4 Untersuchungen an Beton

Die Bestimmung der **Frischbeton**eigenschaften - Frischbetontemperatur, Konsistenz, Rohdichte und Luftgehalt - erfolgte nach DIN 1048-1 [33]. Diese Norm sieht zur Bestimmung der Konsistenz sowohl den Ausbreitversuch als auch den Verdichtungsversuch vor. Aufgrund der Steifigkeit der Betone konnte nur der Verdichtungsversuch angewandt werden.

Die Bestimmung der **Festbeton**eigenschaften - Rohdichte, Druckfestigkeit, Spaltzugfestigkeit und Wasserundurchlässigkeit - erfolgte nach DIN 1048-5 [34].

Die **Carbonatisierungstiefe** wurde nach der Regelung des Deutschen Ausschusses für Stahlbeton [35] festgestellt.

Zur Bestimmung des **dynamischen E-Moduls** wurde ein Grindo-Sonic-Gerät [36] verwendet. Das Prinzip der Messung beruht auf der Ermittlung der Eigenschwingzeit nach Impulsanregung. Die Messung ist zerstörungsfrei und erfolgte an Betonbalken mit den Abmessungen 10 cm x 10 cm x 50 cm.

#### 5 Statistische Methoden zur Beurteilung der Ergebnisse

Für jeden der in den Asphalten verwendeten Brechsande wurden insgesamt 59 Bewertungsparameter in zehn Gruppen ermittelt. Davon sind 48 Parameter in sechs Gruppen als die die Kornform beschreibende Parameter zu werten. Die sachliche Deutung der eventuell gefundenen kausalen Zusammenhänge zwischen den Bewertungsparametern und den gefundenen Asphalteigenschaften liegt außerhalb der statistischen Methodenlehre. Eine Korrelation zwischen den Eigenschaften kann möglicherweise auch durch eine gemeinsame Abhängigkeit einer nicht untersuchten Größe zustande kommen.

Eine wissenschaftlich sinnvolle Beurteilung von Zusammenhängen zwischen abhängigen und unabhängigen Eigenschaften setzt daher die Kenntnis und den Überblick über die untersuchten Parameter im technischen Sinne voraus.

In der Statistik wird daher versucht, die ermittelten Parameter sinnvoll zu dezimieren. Mit dem Ziel, einen funktionalen Zusammenhang zwischen den Brechsand- und Asphalteigenschaften anhand der Durchführung einer multiplen linearen Regressionsrechnung zu finden, wurde die Zahl der je Brechsand ermittelten Kornformparameter mittels bivariater Korrelationsanalysen innerhalb der sechs Gruppen reduziert. Dazu wurden zunächst Parametergruppen gebildet, die auf einem zweiseitigen Signifikanzniveau nach Pearson [37] von kleiner als 1 ⁰/₀₀ korrelieren. Die so gefundenen Parameter einer Gruppe wurden arithmetisch gemittelt. Die Zahl der Kornformparameter meter konnte auf diese Weise auf 20 reduziert werden.

Die Regressionsanalysen wurden mit der Software SPSS [38] im Modus "Stepwise" durchgeführt. In diesem Regressionsmodus werden die unabhängigen Variablen nacheinander in die Regressionsgleichung einbezogen, wobei nur diejenigen Variablen gewählt werden, die bestimmten Gütekriterien entsprechen. Als Gütekriterium wurde das Signifikanzniveau ihres F-Wertes [37] gewählt. Im ersten Schritt wird eine einfache Regression mit derjenigen Variablen durchgeführt, die die höchste Korrelation mit der abhängigen Variablen (Asphalteigenschaft) aufweist. In den folgenden Schritten wird dann jeweils die Variable mit der höchsten partiellen Korrelation [37] ausgewählt.

Multikollinearität wirkt sich steigernd auf das Signifikanzniveau der Regressionsparameter aus. So lassen sich auf der einen Seite durch gut korrelierende unabhängige Variable fast immer 100%ige Korrelationen zur abhängigen Variablen erzeugen. Auf der anderen Seite kann man bei korrelierenden Variablen natürlich nicht mehr von deren Unabhängigkeit sprechen, was zur Folge hat, dass die Regressionskoeffizienten nicht eindeutig bestimmt werden können. (Für ein Bestimmtheitsmaß von  $r^2 = 1$  zwischen den "unabhängigen" Variablen  $x_1$  und  $x_2$  existieren unendlich viele Lösungen für deren Regressionskoeffizienten.) Allerdings liegt der Variablenbereich auf einer Geraden in der  $x_{1/2}$ -Ebene. Die gefundenen Regressionslösungen bilden eine Ebenenschar mit dieser Geraden als Drehachse. Mit SPSS ist es möglich, die Aufnahme von untereinander korrelierenden Variablen in die Regressionsrechnung durch die Überprüfung der Variablentoleranz [38] zu vermeiden. Die Aufnahme unterbleibt, wenn der Toleranzwert unter einem Schwellenwert von 0,01 liegt.

Die rationale Bewertung der Brechsandparameter innerhalb der multiplen linearen Regression erfolgte über die Angabe der standardisierten Regressionskoeffizienten [38]. Diese erhält man durch die Multiplikation der nicht standardisierten Regressionskoeffizienten mit dem Quotienten der Standardabweichungen der unabhängigen Variablen und der Standardabweichungen der abhängigen Variablen. Durch die Standardisierung werden die unterschiedlichen Messdimensionen der verschiedenen Brechsandprüfungen, die sich in den Regressionskoeffizienten niederschlagen, eliminiert und somit vergleichbar gemacht. Über die Beträge der standardisierten Regressionskoeffizienten lässt sich somit der Einfluss der Parameter direkt ablesen.

Die Prüfung der Regressionskoeffizienten erfolgte über die Student-t-Verteilung [37]. Mit Hilfe von SPSS war es möglich, die Vertrauenswahrscheinlichkeit direkt zu berechnen und anzugeben. Dabei wurden ausschließlich Parameter berücksichtigt, deren Vertrauenswahrscheinlichkeit größer als 95 % war.

Zur Einschätzung der nicht standardisierten Regressionskoeffizienten werden deren 95%ige Konfidenzintervalle angegeben.

Die Angabe bestimmter Regressionskoeffizienten der Brechsandparameter ist dann sinnvoll, wenn die Parameter nicht beliebig austauschbar sind. Dies wurde mit einer doppelten partiellen Korrelationsanalyse überprüft. Dabei wurden jeweils diejenigen Parameter als Kontrollvariablen eingesetzt, die sich bezüglich ihrer bivariaten Korrelationen ähnlich sind. Durch die gefundenen partiellen Korrelationen konnten die Ergebnisse der Regressionsanalyse bestätigt werden.

Mineralogische Eigenschaften und Oberflächenstrukturen der Brechsande, die durch die CPA nicht erfasst werden konnten, wurden innerhalb dieser Arbeit nicht rational (auf einer Ratioskala) bewertet. Als Mittel für die nominale Bewertung dieser Eigenschaften wurde eine einfaktorielle Varianzanalyse [39] gewählt, die mit SPSS durchgeführt wurde. Als Faktor wurde die Gesteinsart festgelegt.

Den Maßstab zur Beurteilung des empirischen (in den Laborversuchen ermittelten) F-Wertes bilden die theoretische F-Verteilung und das daraus zu berechnende Signifikanzniveau. Mit dem Signifikanzniveau wurde der Einfluss des Faktors (Gesteinsart) auf die Asphalteigenschaften abgeschätzt.

#### 6 Ergebnisse der Sanduntersuchungen

Im Folgenden werden die Untersuchungsergebnisse in Abhängigkeit von einer diskreten Größe, dem Brechsand, graphisch dargestellt. Um den Vergleich der Brechsandeigenschaften übersichtlicher zu gestalten, werden die ermittelten (Ordinaten-) Werte geradlinig verbunden.

## 6.1 Ergebnisse der Untersuchungen an den Sanden zur Verwendung in Asphalt

#### 6.1.1 Mechanische Eigenschaften der Sande

Die Fließzahlen der Brechsande aus Grauwacke und Basalt sind in **Abbildung 6-1**, der Abrieb der Brechsande in der Kugelmühle in **Abbildung 6-2** dargestellt.



Abbildung 6-1: Fließzahl der Brechsande aus Grauwacke und Basalt



### Abbildung 6-2: Abrieb in der Kugelmühle der Brechsande aus Grauwacke und Basalt

**Tabelle 6-1** enthält die Angaben zur Korngrößenverteilung der Brechsande, bevor Über- und Unterkorn abgesiebt wurden.

Für alle spezifischen Sanduntersuchungen sowie für die Verwendung im Asphalt wurden die Brechsande von Über- und Unterkorn befreit. Die sich dann ergebenden Korngrößenverteilungen sind in **Tabelle 6-2** dargestellt.

Sieb- weite [mm]	Durchgang [M%]										
	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02	
5	100	100	100	100	100	100	100	100	100	100	
2	78,1	83,8	78,6	78,8	81,8	81,9	75,2	73,5	85,5	96,5	
0,71	38,8	43,2	41,8	44,0	43,7	43,9	38,1	39,5	49,6	52,5	
0,25	22,4	28	26,7	28,5	25,2	28,1	22,9	26,3	35,1	35,1	
0,09	16,7	20,3	19,1	20,3	16,1	18,8	15,4	17,8	23,6	23,2	

Tabelle 6-1:Korngrößenverteilung der Brechsande aus Grauwacke und Ba-<br/>salt vor Absiebung von Über- und Unterkorn

Siebweite [mm]	Durchgang [M%]										
	G02K	G02oK	G08K	G08oK	G02	B02K	B020oK	B08K	B0/8oK	B02	
2	100	100	100	100	100	100	100	100	100	100	
0,71	36	36,1	38,2	40,5	42	39,8	38	39	42	40	
0,25	9,3	12,1	12,8	14	13,9	14,7	12,5	15,3	18,6	16,2	

Tabelle 6-2:Korngrößenverteilung der Brechsande nach Absiebung von<br/>Über- und Unterkorn

In **Abbildung 6-3** sind die Ungleichförmigkeitszahlen D25/D75 der Brechsande nach Absiebung von Über- und Unterkorn dargestellt.



Abbildung 6-3: Ungleichförmigkeitszahlen D25/D75 der Brechsande aus Grauwacke und Basalt ohne Über- und Unterkorn

#### 6.1.2 Ergebnisse der photooptischen Sanduntersuchungen

Um die Anzahl der photooptisch gefundenen Kornformparameter für die folgende multiple lineare Regressionsrechnung möglichst klein zu halten, wurde die Anzahl der gefundenen Parameter mittels bivariater Korrelationsanalyse reduziert. Zusam-
mengefasst und gemittelt wurden die Parameter, die auf einem zweiseitigen Signifikanzniveau von  $< 1^{0}/_{00}$  korrelieren.

Die photooptische Analyse der Korngrößenverteilung erfolgte an den Brechsanden mit den Korngrößenverteilungen gemäß **Tabelle 6-2**.

Die festgestellten Korngrößenverteilungen sind in **Tabelle 6-3** für den Feret-Durchmesser und in **Tabelle 6-4** für den Äquivalentdurchmesser aufgeführt sowie in den **Abbildungen 6-4** bis **6-7** graphisch dargestellt.

d _F				Du	ırchgan	g [Vol	%]			
[mm]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
5,0	100,00	99,68	99,67	100,00	98,66	100,00	99,72	99,59	100,00	100,00
4,0	98,49	98,38	97,81	98,25	94,98	99,84	98,75	97,21	99,54	99,04
3,55	96,48	97,10	94,79	95,69	90,58	98,51	97,22	95,87	98,35	97,31
3,15	91,59	92,78	90,65	90,63	84,64	95,41	94,95	91,96	96,39	94,60
2,5	79,19	83,40	82,15	79,80	73,36	86,28	87,67	83,40	91,55	87,38
2,0	62,68	68,91	70,30	66,59	60,22	73,57	74,56	68,49	84,06	78,08
1,6	49,5	57,00	59,38	55,12	49,62	61,93	63,75	56,61	76,65	69,93
1,0	27,16	33,45	38,80	33,74	29,51	38,79	41,51	35,01	57,39	50,23
0,71	17,80	22,2	27,98	24,70	19,51	26,49	29,02	24,71	42,44	36,93
0,63	15,41	19,11	24,81	22,19	16,69	23,03	25,38	21,96	38,09	32,53
0,5	13,05	15,97	21,48	19,56	13,92	19,53	21,52	19,14	33,48	27,59
0,4	8,22	9,56	13,98	13,48	8,16	12,30	13,25	13,06	23,42	16,53
0,315	5,74	6,38	9,92	9,86	5,37	8,86	9,11	9,72	17,86	11,15
0,25	3,29	3,45	5,77	5,83	2,80	5,71	5,20	6,16	11,72	6,85
0,2	1,22	1,17	2,15	2,18	0,92	2,64	1,98	2,68	5,49	3,15
0,09	0,11	0,10	0,18	0,18	0,08	0,32	0,20	0,34	0,86	0,36
0,063	0	0	0	0	0	0,00	0,00	0,00	0,00	0,00

Tabelle 6-3:Volumetrische Korngrößenverteilung der Brechsande aus<br/>Grauwacke und Basalt ( $\delta = d_F$ )



Abbildung 6-4: Korngrößenverteilung der Grauwackebrechsande ( $\delta = d_F$ )



Abbildung 6-5: Korngrößenverteilung der Basaltbrechsande ( $\delta = d_F$ )

d _Ä				Du	rchgan	g [Vol.	-%]			
[mm]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
5	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
4	100,00	100,00	100,00	100,00	99,86	100,00	100,00	100,00	100,00	100,00
3,55	100,00	99,88	99,83	100,00	99,75	100,00	100,00	100,00	100,00	100,00
3,15	99,91	99,81	99,65	99,89	99,3	100,00	100,00	99,62	100,00	100,00
2,5	96,7	97,11	96,35	95,93	94,26	98,32	97,72	97,26	98,25	98,70
2	83,08	84,22	87,95	84,43	83,27	89,65	87,99	88,09	93,85	93,05
1,6	66,9	68,82	76,7	70,95	70,5	77,99	75,91	75,80	88,44	84,34
1	42,18	42,55	56,7	46,1	49,12	56,46	55,46	55,70	75,66	65,98
0,71	30,12	29,54	44,3	34,32	36,4	43,07	42,78	44,12	62,74	52,55
0,63	26,6	25,56	40,2	31,09	32,24	38,49	38,45	40,35	57,71	47,38
0,5	20,5	18,83	32,32	25,4	24,91	30,10	30,33	33,70	48,73	36,81
0,4	15,36	13,35	24,95	20,3	18,36	22,85	22,67	27,58	40,58	25,91
0,315	10,67	8,59	17,67	15,04	12,06	16,40	15,52	21,18	32,07	15,50
0,25	6,56	4,84	10,86	9,69	6,67	11,49	9,45	14,54	22,77	9,30
0,2	3,67	2,47	5,88	5,49	3,26	7,47	5,20	8,83	14,57	5,80
0,09	0,24	0,11	0,19	0,37	0,12	0,54	0,25	0,43	0,94	0,42
0,063	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Tabelle 6-4:Volumetrische Korngrößenverteilung der Brechsande aus<br/>Grauwacke und Basalt ( $\delta$ = d_Ä)



Abbildung 6-6: Korngrößenverteilung der Grauwackebrechsande ( $\delta = d_{\ddot{A}}$ )



Abbildung 6-7: Korngrößenverteilung der Basaltbrechsande ( $\delta = d_{\ddot{A}}$ )

Zur Ermittlung eines funktionalen Zusammenhangs einer Korngrößenverteilung mit relevanten Asphalteigenschaften ist es sinnvoll, die experimentell gefundene Korngrößenverteilung durch einparametrige Funktionen zu approximieren. Die Approximation erfolgt mit der Potenzverteilung gemäß Gleichung (6-1) sowie mit der RRSB-Verteilung gemäß Gleichung (6-2).

$$Y = (x/x_{max})^m$$
 (6-1)

$$Y = 1 - \exp((x/x_{63,3})^n)$$
(6-2)

Mittels bivariater Korrelationsanalyse wurde eine der beiden Verteilungen zur Approximation qualifiziert. Die **Tabellen 6-5** und **6-6** enthalten die bivariaten Bestimmtheitsmaße der beiden Verteilungen mit den Analysewerten. Die aufgeführten Exponenten "m" und "n" ergaben dabei die größtmögliche Näherung zu den Analysewerten.

Tabelle 6-5:	Bivariate Bestimmtheitsmaße für den Zusammenhang zwischen
	den theoretischen und den festgestellten Verteilungen der Brech-
	sande aus Grauwacke und Basalt ( $\delta = d_F$ )

Brechsand	RRSB/po	n	Potenz/po	m
G02K	0,998	1,57	0,984	0,76
G02oK	0,998	1,51	0,986	0,69
G08K	0,996	1,33	0,994	0,63
G08oK	0,996	1,31	0,994	0,68
G02	0,998	1,44	0,992	0,76
B02K	0,998	1,43	0,990	0,63
B02oK	0,996	1,40	0,990	0,61
B08K	0,996	1,35	0,992	0,66
B08oK	0,996	1,24	0,988	0,48
B02	0,992	1,29	0,986	0,55

Tabelle 6-6: Bivariate Bestimmtheitsmaße für den Zusammenhang zwischen den theoretischen und den festgestellten Verteilungen der Brechsande aus Grauwacke und Basalt ( $\delta = d_{\ddot{A}}$ )

Brechsand	RRSB/po	n	Potenz/po	m
G02K	0,997	1,48	0,994	1,0
G02oK	0,998	1,59	0,993	1,0
G08K	0,995	1,26	0,978	0,75
G08oK	0,996	1,32	0,992	0,88
G02	0,996	1,35	0,984	0,89
B02K	0,998	1,32	0,985	0,76
B02oK	0,995	1,31	0,981	0,78
B08K	0,995	1,17	0,984	0,73
B08oK	0,993	1,25	0,943	0,53
B02	0,993	1,47	0,958	0,68

Als Beurteilungskriterium wurde die Summe der quadratischen Abweichungen verwendet. Die RRSB-Verteilung korreliert in 18 von 20 Fällen besser als die Potenzverteilung. Somit wurde der Exponent "n" der RRSB-Verteilung als beschreibender Parameter der photooptischen Korngrößenverteilung verwendet.

Der kleinste Quotient der Summen der quadratischen Abweichungen wurde beim Grauwackebrechsand G08oK ( $\delta = d_F$ ) gefunden. Hier unterscheiden sich die beiden Approximationsmöglichkeiten daher im Vergleich am wenigsten. Trotzdem eignet sich auch hier die RRSB-Verteilung besser zur Beschreibung der tatsächlichen Verteilung. **Abbildung 6-8** macht optisch diesen Sachverhalt deutlich. In **Abbildung 6-9** sind die Parameter "n" der untersuchten Brechsande vergleichend dargestellt.

Die Verteilungsparameter D25/D75 und FG (Feinheitsgrad) sind in den **Abbildungen 6-10** und **6-11** für die Grauwacke- und Basaltbrechsande dargestellt.



Abbildung 6-8: Approximation der theoretischen an die tatsächliche Verteilung für den Grauwackebrechsand



Abbildung 6-9: Vergleich der RRSBn-Parameter für die Brechsande aus Grauwacke und Basalt



Abbildung 6-10: Vergleich von D25/D75_F und FG_F für die Brechsande aus Grauwacke und Basalt



Abbildung 6-11: Vergleich von D25/D75_Å und FG_Å für die Brechsande aus Grauwacke und Basalt

Die Kornanzahlverteilungen der Brechsande aus Grauwacke und Basalt sind in den **Tabellen 6-7** und **6-8** aufgeführt. Zur besseren Übersicht sind sie zusätzlich in den **Abbildungen 6-12** bis **6-15** graphisch dargestellt.

Kornklasso					Korna	Inzahl				
NUTIRIASSE	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1258	1092	549	610	1167	491	610	552	129	294
2,000-1,600	1903	1692	954	1012	1808	852	972	825	246	491
1,600-1,000	9765	10149	5543	5734	10566	5226	6220	4574	2107	3785
1,000-0,710	14957	17646	10486	8815	19042	9894	12347	7882	5574	9078
0,710-0,630	7563	9481	5992	4811	9827	5432	7001	4158	3125	5755
0,630-0,500	10611	13732	8934	7150	14549	7811	10575	6036	4712	9191
0,500-0,400	42312	54672	39491	32722	58416	31376	44247	25564	20083	40223
0,400-0,315	46014	57365	45076	40767	61016	31728	46741	29652	23445	41340
0,315-0,250	88660	103479	89888	88429	108889	56678	86219	61457	50507	64377
0,250-0,200	178986	190483	186563	191199	189183	131765	169636	143420	122153	131847
0,200-0,090	323400	305943	344129	353202	283945	335221	314671	325698	307079	337174
0,090-0,063	273904	233768	262091	265172	240780	383296	300533	389952	460779	356284
< 0,063	0	0	0	0	0	0	0	0	0	0

Tabelle 6-7:Kornanzahlverteilung der Brechsande aus Grauwacke und<br/>Basalt ( $\delta = d_F$ )

Tabelle 6-8:Kornanzahlverteilung der Brechsande aus Grauwacke und<br/>Basalt ( $\delta = d_{\ddot{A}}$ )

Kornklasso					Korna	anzahl				
Rominasse	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1069	537	274	433	557	321	331	243	100	138
2,000-1,600	2392	1231	697	951	1225	797	790	625	242	404
1,600-1,000	10584	6073	3674	5200	6015	4356	3926	3034	1749	2546
1,000-0,710	17271	9958	7364	7826	11894	8828	8046	5739	5646	6068
0,710-0,630	9902	6017	4783	4312	7568	5901	5333	3643	4154	4486
0,630-0,500	29291	17393	15750	13039	22796	18521	17253	11038	12739	15798
0,500-0,400	48610	27816	28939	23152	40050	31462	31848	20067	22826	31979
0,400-0,315	88542	47979	56921	47579	76709	55132	58958	41828	47688	59670
0,315-0,250	158352	77244	108948	99282	133518	86533	102570	89350	107182	71294
0,250-0,200	222056	97153	158880	154857	168505	143872	143231	152722	187686	82987
0,200-0,090	863056	305947	564023	603432	467806	853502	530949	738099	1069278	436266
0,090-0,063	317386	79216	105520	226981	103890	323477	140807	195055	360371	165729
< 0,063	0	0	0	0	0	0	0	0	0	0



Abbildung 6-12: Kornanzahlverteilung der Grauwackebrechsande ( $\delta = d_F$ )



Abbildung 6-13: Kornanzahlverteilung der Basaltbrechsande ( $\delta = d_F$ )



Abbildung 6-14: Kornanzahlverteilung der Grauwackebrechsande ( $\delta = d_{\ddot{A}}$ )



Abbildung 6-15: Kornanzahlverteilung der Basaltbrechsande ( $\delta = d_{\ddot{A}}$ )

Die Brechsande lassen sich durch den Quotienten der Kornanzahlen aus den Kornklassen 0,2/0,09 mm und 0,09/0,063 mm deutlich unterscheiden. Dieser Quotient (Bezeichnung QKA), dessen Größe direkt mit der Qualität der mechanischen Fraktionierung der Brechsande zusammenhängt, ist für Grauwacke und Basalt in **Abbildung 6-16** dargestellt.



# Abbildung 6-16: Kornanzahlverteilungsquotient QKA_δ für die Brechsande aus Grauwacke und Basalt

Die Sphärizitäten  $F_{S,\delta,n}$  sind in **Anhang 1** in den **Tabellen A1-1** und **A1-2** für die untersuchten Kornklassen aufgeführt und in den **Abbildungen A1-1** und **A1-2** für die Grauwacke- und Basaltbrechsande graphisch dargestellt.

**Tabelle 6-9** beinhaltet die für die Klärung eines funktionalen Zusammenhangs mit Asphalteigenschaften verwendeten Parametern  $F_{S,\delta,n}$ . In den **Abbildungen 6-17** und **6-18** sind diese graphisch dargestellt.

Die in Abschnitt 5 erläuterte Korrelationsanalyse ist in Anhang 1 dokumentiert.

Parameter	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
F _{S,F,1}	1,144	1,155	1,153	1,165	1,202	1,140	1,141	1,145	1,162	1,212
F _{S,F,2}	1,112	1,121	1,125	1,131	1,148	1,106	1,109	1,108	1,108	1,130
F _{S,F,3}	1,088	1,092	1,097	1,102	1,103	1,079	1,079	1,086	1,084	1,086
F _{s,ä,1}	1,134	1,133	1,154	1,151	1,197	1,138	1,136	1,141	1,144	1,144
F _{S,Ä,2}	1,109	1,106	1,113	1,114	1,131	1,104	1,101	1,104	1,094	1,094
F _{S,Ä,3}	1,082	1,080	1,090	1,093	1,093	1,076	1,070	1,080	1,071	1,071

 Tabelle 6-9:
 Mittelwerte der zusammengefassten Parameter F_{S,δ,n} für

 Grauwacke- und Basaltbrechsand



Abbildung 6-17: Mittelwerte der zusammengefassten Parameter F_{S,F,n} für Grauwacke- und Basaltbrechsand



#### Abbildung 6-18: Mittelwerte der zusammengefassten Parameter F_{S,Ä,n} für Grauwacke- und Basaltbrechsand

Die Kubizitäten  $F_{Kub,\delta,n}$  sind in **Anhang 2** in den **Tabellen A2-1 und A2-2** für die untersuchten Kornklassen aufgelistet und in den **Abbildungen A2-1** und **A2-2** für die Brechsande aus Grauwacke und Basalt graphisch dargestellt.

**Tabelle 6-10** beinhaltet die für die Klärung eines funktionalen Zusammenhangs mit Asphalteigenschaften verwendeten Parameter  $F_{Kub,\delta,n}$ . In den **Abbildungen 6-19** und **6-20** sind diese graphisch dargestellt.

Die in Abschnitt 5 erläuterte Korrelationsanalyse ist in Anhang 2 dokumentiert.

r	1									
Parameter	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
F _{Kub,F,1}	1,459	1,486	1,528	1,504	1,628	1,450	1,476	1,490	1,545	1,690
F _{Kub,F,2}	1,400	1,403	1,455	1,461	1,472	1,400	1,426	1,421	1,411	1,506
F _{Kub,F,3}	1,365	1,362	1,409	1,43	1,427	1,353	1,383	1,394	1,381	1,395
F _{Kub.F.4}	1,344	1,338	1,379	1,396	1,383	1,332	1,352	1,371	1,363	1,332
F _{Kub,Ä,1}	1,346	1,347	1,414	1,431	1,565	1,347	1,366	1,292	1,352	1,552
F _{Kub.Ä.2}	1,368	1,374	1,418	1,408	1,486	1,352	1,339	1,315	1,405	1,495
F _{Kub,Ä,3}	1,376	1,364	1,369	1,389	1,410	1,351	1,345	1,348	1,332	1,433
F _{Kub,Ä,4}	1,351	1,342	1,350	1,368	1,359	1,330	1,326	1,358	1,314	1,371

 Tabelle 6-10:
 Mittelwerte der zusammengefassten Parameter F_{Kub,δ,n} für

 Grauwacke- und Basaltbrechsande



Abbildung 6-19: Mittelwerte der zusammengefassten Parameter F_{Kub,F,n} für Grauwacke- und Basaltbrechsand



#### Abbildung 6-20: Mittelwerte der zusammengefassten Parameter F_{Kub,Ä,n} für Grauwacke- und Basaltbrechsand

Die Konkavitäten  $F_{Kon,\delta,n}$  sind in **Anhang 3** in den **Tabellen A3-1** und **A3-2** für die untersuchten Kornklassen aufgeführt und in den **Abbildungen A3-1** und **A3-2** für die Brechsande aus Grauwacke und Basalt graphisch dargestellt.

**Tabelle 6-11** enthält die für die Klärung eines funktionalen Zusammenhangs mit Asphalteigenschaften verwendeten Parameter  $F_{Kon,\delta,n}$ . In den **Abbildungen 6-21** und **6-22** sind diese graphisch dargestellt.

Die in Abschnitt 5 erläuterte Korrelationsanalyse ist in Anhang 3 dokumentiert.

 Tabelle 6-11:
 Mittelwerte der zusammengefassten Parameter F_{Kon,δ,n} für Grauwacke- und Basaltbrechsand

Parame- ter	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
F _{Kon,F,1}	1,528	1,561	1,603	1,582	1,729	1,519	1,542	1,556	1,621	1,819
F _{Kon,F,2}	1,459	1,472	1,519	1,529	1,549	1,457	1,482	1,475	1,467	1,577
F _{Kon,F,3}	1,405	1,402	1,446	1,472	1,464	1,386	1,412	1,428	1,419	1,407
F _{Kon,Ä,1}	1,407	1,396	1,492	1,505	1,661	1,415	1,430	1,416	1,403	1,646
F _{Kon,Ä,2}	1,430	1,435	1,492	1,473	1,572	1,410	1,401	1,429	1,468	1,578
F _{Kon,Ä,3}	1,427	1,413	1,419	1,439	1,461	1,399	1,391	1,381	1,373	1,479
F _{Kon,Ä,4}	1,391	1,383	1,391	1,413	1,399	1,366	1,361	1,360	1,353	1,395



Abbildung 6-21: Mittelwerte der zusammengefassten Parameter F_{Kon,F,n} für Grauwacke- und Basaltbrechsand



Abbildung 6-22: Mittelwerte der zusammengefassten Parameter F_{Kon,Ä,n} für Grauwacke- und Basaltbrechsand

## 6.2 Ergebnisse der Untersuchungen an den Sanden zur Verwendung in Beton

Im Folgenden werden die Ergebnisse für die Basaltbrechsande aus dem vorangegangenen Abschnitt mit aufgeführt, um den direkten Vergleich mit den anderen Sanden zu ermöglichen.

Die Rohdichte  $\rho_{R,M}$  der Sande wurde für Natursand zu 2,633 g/cm³, für Kalkstein zu 2,725 g/cm³ und für Basalt zu 3,050 g/cm³ bestimmt.

# 6.2.1 Mechanische Eigenschaften des Natursandes sowie der Kalkstein- und Basaltbrechsande

Die Fließzahlen der untersuchten Sande sind in **Abbildung 6-23** dargestellt. Die Abriebwerte der Sande in der Kugelmühle enthält **Abbildung 6-24**.



Abbildung 6-23: Fließzahl von Natursand sowie der Kalkstein- und Basaltbrechsande



#### Abbildung 6-24: Abrieb in der Kugelmühle von Natursand sowie der Kalkstein- und Basaltbrechsande

**Tabelle 6-12** enthält die Angaben zur Korngrößenverteilung des Natursandes und der Kalkstein- und Basaltbrechsande. In **Abbildung 6-25** und **Abbildung 6-26** sind diese graphisch dargestellt.

Sieb-					Durch	ngang [	M%]				
weite [mm]	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
2,0	93,0	72,0	78,0	81,0	77,0	94,0	86,0	70,0	81,0	70,0	95,0
1,0	79,0	48,0	48,0	52,0	46,0	66,0	54,0	38,0	54,0	39,0	65,0
0,5	44,0	31,0	33,0	35,0	30,0	24,0	35,0	26,0	39,0	27,0	46,0
0,25	9,0	21,0	22,0	24,0	21,0	7,0	26,0	20,0	30,0	20,0	34,0
0,125	0,0	15,0	16,0	18,0	18,3	3,0	19,0	15,0	22,0	15,0	24,0
0,063	0,0	11,4	7,5	12,2	16	2,0	13,7	12,8	10,9	12,3	17,9

Tabelle 6-12:	Korngrößenverteilung des Natursandes sowie der Kalkstein-
	und Basaltbrechsande



Abbildung 6-25: Korngrößenverteilung des Natursandes und der Kalksteinbrechsande



Abbildung 6-26: Korngrößenverteilung der Basaltbrechsande



In **Abbildung 6-27** sind die Ungleichförmigkeitszahlen D25/D75 für den Natursand sowie für die Kalkstein- und Basaltbrechsande graphisch dargestellt.

## Abbildung 6-27: Ungleichförmigkeit D25/D75 des Natursandes sowie der Kalkstein- und Basaltbrechsande

#### 6.2.2 Ergebnisse der photooptischen Untersuchungen

Die photooptische Analyse der Korngrößenverteilung erfolgte an der Kornklasse 0,09/2 mm, also nicht am Überkornanteil. Die festgestellten Korngrößenverteilungen sind in den **Tabellen 6-13** und **6-14** sowie in den **Abbildungen 6-28** und **6-29** für den Natursand und die Kalksteinbrechsande dargestellt. Die entsprechenden Darstellungen für die Basaltbrechsande enthalten die **Abbildungen 6-5** und **6-7**.

d _F					Durch	gang [\	/ol%]				
[mm]	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
5,0	100,00	99,50	99,85	99,63	99,22	99,85	100,00	99,72	99,59	100,00	100,00
4,0	100,00	97,06	97,90	98,46	96,16	99,32	99,84	98,75	97,21	99,54	99,04
3,55	100,00	93,58	94,64	96,62	93,16	97,76	98,51	97,22	95,87	98,35	97,31
3,15	99,64	86,62	89,47	92,98	87,36	94,92	95,41	94,95	91,96	96,39	94,60
2,5	98,74	71,88	75,60	83,28	74,76	88,25	86,28	87,67	83,40	91,55	87,38
2,0	96,94	52,12	60,75	70,51	60,14	78,76	73,57	74,56	68,49	84,06	78,08
1,6	94,38	36,61	50,11	59,35	47,94	67,88	61,93	63,75	56,61	76,65	69,93
1,0	80,61	11,16	30,94	36,67	25,29	33,43	38,79	41,51	35,01	57,39	50,23
0,71	57,42	3,88	20,17	25,65	15,08	17,52	26,49	29,02	24,71	42,44	36,93
0,63	48,18	2,71	17,30	22,71	12,56	13,79	23,03	25,38	21,96	38,09	32,53
0,5	37,74	1,76	14,43	19,71	10,08	10,32	19,53	21,52	19,14	33,48	27,59
0,4	17,79	0,58	8,82	12,98	5,51	4,97	12,30	13,25	13,06	23,42	16,53
0,315	9,57	0,27	6,07	9,21	3,53	3,05	8,86	9,11	9,72	17,86	11,15
0,25	3,54	0,10	3,42	5,27	1,84	1,45	5,71	5,20	6,16	11,72	6,85
0,2	0,60	0,02	1,25	1,96	0,63	0,41	2,64	1,98	2,68	5,49	3,15
0,09	0,02	0,00	0,14	0,20	0,06	0,03	0,32	0,20	0,34	0,86	0,36
0,063	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Tabelle 6-13:Volumetrische Korngrößenverteilung des Natursandes sowie<br/>der Kalkstein- und Basaltbrechsande ( $\delta = d_F$ )



Abbildung 6-28: Korngrößenverteilung des Natursandes und der Kalksteinbrechsande ( $\delta = d_F$ )

Tabelle 6-14:Volumetrische Korngrößenverteilung des Natursandes sowie<br/>der Kalkstein- und Basaltbrechsande ( $\delta = d_{\ddot{A}}$ )

d _Ä					Durch	gang [\	/ol%]				
[mm]	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
5,0	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
4,0	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
3,55	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
3,15	100,00	99,78	99,84	99,85	99,79	99,95	100,00	100,00	99,62	100,00	100,00
2,5	99,78	93,29	94,83	97,35	95,48	98,3	98,32	97,72	97,26	98,25	98,70
2,0	98,64	75,64	80,85	88,75	80,07	92,05	89,65	87,99	88,09	93,85	93,05
1,6	96,80	53,56	66,94	76,59	63,97	83,45	77,99	75,91	75,80	88,44	84,34
1,0	88,59	20,97	48,32	53,96	39,21	53,44	56,46	55,46	55,70	75,66	65,98
0,71	71,56	8,19	36,34	40,53	25,78	30,56	43,07	42,78	44,12	62,74	52,55
0,63	61,57	5,62	32,06	36,59	21,75	24,68	38,49	38,45	40,35	57,71	47,38
0,5	40,54	2,62	24,74	29,33	15,16	14,8	30,10	30,33	33,70	48,73	36,81
0,4	23,81	1,16	18,58	22,85	10,17	8,59	22,85	22,67	27,58	40,58	25,91
0,315	11,44	0,47	12,79	16,10	6,21	4,89	16,40	15,52	21,18	32,07	15,50
0,25	3,95	0,17	7,46	9,60	3,33	2,39	11,49	9,45	14,54	22,77	9,30
0,2	1,14	0,06	3,87	5,10	1,66	1,05	7,47	5,20	8,83	14,57	5,80
0,09	0,01	0,00	0,23	0,29	0,06	0,04	0,54	0,25	0,43	0,94	0,42
0,063	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00



# Abbildung 6-29: Korngrößenverteilung ( $\delta$ = d_Ä) des Natursandes sowie der Kalksteinbrechsande

Zur numerischen Darstellung der Unterschiede der untersuchten Korngrößenverteilungen wurden die experimentell gefundenen Korngrößenverteilungen mit der Potenzverteilung gemäß Gleichung (6-1) und mit der RRSB-Verteilung gemäß Gleichung (6-2) approximiert.

Mittels bivariater Korrelationsanalyse wurde eine der beiden Verteilungen zur Approximation qualifiziert. Die **Tabellen 6-15** und **6-16** enthalten die bivariaten Bestimmtheitsmaße der beiden Verteilungen mit den Analysewerten. Die aufgeführten Exponenten "n" und "m" ergaben dabei die größtmögliche Näherung zu den Analysewerten.

Als Beurteilungskriterium wurde die Summe der quadratischen Abweichungen verwendet. Die RRSB-Verteilung korreliert in allen Fällen besser als die Potenzverteilung. Somit eignet sich der Exponent "n" der RRSB-Verteilung als beschreibender Parameter der photooptischen Korngrößenverteilung besser als der Exponent "m" der Potenzverteilung.

Sand	RRSB/po	n	Potenz/po	m
NS	0,994	2,56	0,910	0,67
K02K	0,998	2,66	0,966	2,57
K02oK	0,998	1,46	0,976	1,4
K08K	0,997	1,44	0,982	1,14
K08oK	0,999	1,74	0,976	1,63
K02	0,999	2,12	0,973	1,28
B02K	0,998	1,43	0,990	0,63
B02oK	0,996	1,40	0,990	0,61
B08K	0,996	1,35	0,992	0,66
B08oK	0,996	1,24	0,988	0,48
B02	0,992	1,29	0,986	0,55

Tabelle 6-15:Bivariate Bestimmtheitsmaße für die Approximation ( $\delta$ =d_F) beiNatursand sowie bei den Kalkstein- und Basaltbrechsanden

Tabelle 6-16:Bivariate Bestimmtheitsmaße für die Approximation ( $\delta = d_{\ddot{A}}$ ) beiNatursand sowie bei den Kalkstein- und Basaltbrechsanden

Sand	RRSB/po	n	Potenz/po	m
NS	0,994	3,13	0,873	0,6
K02K	1,000	2,67	0,986	1,67
K02oK	0,994	1,32	0,985	091
K/8K	0,996	1,36	0,984	0,79
K08oK	0,997	1,71	0,992	1,13
K02	0,999	2,2	0,964	0,97
B02K	0,998	1,32	0,985	0,76
B02oK	0,995	1,31	0,981	0,78
B08K	0,995	1,17	0,984	0,73
B08oK	0,993	1,25	0,943	0,53
B02	0,993	1,47	0,958	0,68

In **Abbildung 6-30** sind die Parameter "n" der untersuchten Brechsande vergleichend dargestellt.



### Abbildung 6-30: Vergleich der RRSBn-Parameter bei Natursand sowie bei den Kalkstein- und Basaltbrechsanden

Die Verteilungsparameter D25/D75 sind in **Abbildung 6-31** für den Natursand sowie die Kalkstein- und Basaltbrechsande graphisch dargestellt.



Abbildung 6-31: Vergleich der D25/D75-Parameter für den Natursand sowie die Kalkstein- und Basaltbrechsande

Die Kornanzahlverteilungen des Natursandes sowie der Kalkstein- und Basaltbrechsande sind in den **Tabellen 6-17** und **6-18** aufgeführt. Zur besseren Übersicht sind die des Natursandes und der Kalksteinbrechsande zusätzlich in den **Abbildungen 6-32** und **6-33** graphisch dargestellt (entsprechende Darstellung für Basaltbrechsand in den **Abbildungen 6-13** und **6-15**).

Korn-					Ko	rnanza	ahl				
klasse	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
2 500 2 000	101	20702	1020	616	1920	1496	401	610	550	120	204
2,500-2,000	121	20792	1020	010	1020	1400	491	010	552	129	294
2,000-1,600	334	30624	1409	1008	2900	3280	852	972	825	246	491
1,600-1,000	6452	147305	7924	6298	16494	32301	5226	6220	4574	2107	3785
1,000-0,710	34940	151335	15773	11011	26662	50770	9894	12347	7882	5574	9078
0,710-0,630	25638	50193	8264	5780	13062	23865	5432	7001	4158	3125	5755
0,630-0,500	41133	57974	11742	8399	18327	31568	7811	10575	6036	4712	9191
0,500-0,400	151359	134900	44571	36942	65097	92297	31376	44247	25564	20083	40223
0,400-0,315	133709	78324	46514	43575	60599	71938	31728	46741	29652	23445	41340
0,315-0,250	191568	84695	87328	88713	100256	116939	56678	86219	61457	50507	64377
0,250-0,200	221930	95284	170162	177975	170888	181612	131765	169636	143420	122153	131847
0,200-0,090	150505	90391	296045	319683	275503	226143	335221	314671	325698	307079	337174
0,090-0,063	42310	58184	309248	300000	248392	176801	167801	300533	389952	460779	356284
< 0,063	0	0	0	0	0	0	0	0	0	0	0

Tabelle 6-17:Kornanzahlverteilung ( $\delta = d_F$ ) des Natursandes sowie der<br/>Kalkstein- und Basaltbrechsande

Korn-					K	ornanz	ahl				
klasse	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	68	11715,6	582	283	1348	680	321	331	243	100	138
2,000-1,600	229	27496	1083	757	2690	1751	797	790	625	242	404
1,600-1,000	3312	116759	4277	4096	12197	20142	4356	3926	3034	1749	2546
1,000-0,710	21236	147946	9308	7908	21762	44293	8828	8046	5739	5646	6068
0,710-0,630	22414	60377	6390	4556	12720	22650	5901	5333	3643	4154	4486
0,630-0,500	80588	117179	18667	14398	35474	64583	18521	17253	11038	12739	15798
0,500-0,400	124112	112133	30932	25328	52755	78732	31462	31848	20067	22826	31979
0,400-0,315	181892	105277	58187	52764	83223	93524	55132	58958	41828	47688	59670
0,315-0,250	221118	93386	109428	103518	123890	130694	86533	102570	89350	107182	71294
0,250-0,200	164626	70737	145798	141817	143160	138198	143872	143231	152722	187686	82987
0,200-0,090	167171	116338	461622	487024	424614	317320	853502	530949	738099	1069278	436266
0,090-0,063	13234	20651	153725	157551	86164	87433	323477	140807	195055	360371	165729
< 0,063	0	0	0	0	0	0	0	0	0	0	0

Tabelle 6-18:Kornanzahlverteilung ( $\delta = d_{A}$ ) des Natursandes sowie der<br/>Kalkstein- und Basaltbrechsande



Abbildung 6-32: Kornanzahlverteilung des Natursandes und des Kalksteinbrechsandes ( $\delta = d_F$ )



Abbildung 6-33: Kornanzahlverteilung des Natursandes und des Kalksteinbrechsandes ( $\delta = d_{\ddot{A}}$ )

Die **Tabellen 6-19** und **6-20** enthalten die Sphärizitäten  $F_{S,\delta,n}$  der für die Betonuntersuchungen verwendeten Sande. In **Abbildung 6-34** und **Abbildung 6-35** sind diese graphisch dargestellt.

Kornklasse					Sph	ärizität	t F _{S,F}				
Nomkiasse	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,108	1,143	1,140	1,153	1,150	1,160	1,146	1,148	1,150	1,182	1,241
2,000-1,600	1,093	1,132	1,140	1,142	1,141	1,142	1,145	1,142	1,149	1,161	1,216
1,600-1,000	1,092	1,118	1,131	1,130	1,124	1,117	1,129	1,134	1,137	1,143	1,178
1,000-0,710	1,071	1,099	1,115	1,116	1,107	1,098	1,115	1,118	1,117	1,116	1,147
0,710-0,630	1,060	1,087	1,105	1,112	1,094	1,086	1,105	1,107	1,106	1,106	1,128
0,630-0,500	1,055	1,081	1,100	1,109	1,088	1,079	1,099	1,102	1,102	1,101	1,116
0,500-0,400	1,046	1,071	1,090	1,098	1,077	1,069	1,085	1,085	1,093	1,090	1,095
0,400-0,315	1,038	1,061	1,076	1,082	1,064	1,060	1,073	1,073	1,079	1,078	1,076

Tabelle 6-19:Sphärizitäten F_{S,F} des Natursandes sowie der Kalkstein- und<br/>Basaltbrechsande

Tabelle 6-20:	Sphärizitäten F _{s,ä} des Natursandes sowie der Kalkstein- und
	Basaltbrechsande

Kornklasse					Spha	arizitäi	t F _{s,ä}				
NUTINIASSE	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,115	1,137	1,131	1,136	1,139	1,134	1,134	1,146	1,163	1,153	1,194
2,000-1,600	1,095	1,124	1,127	1,133	1,129	1,128	1,128	1,138	1,132	1,156	1,189
1,600-1,000	1,076	1,118	1,121	1,123	1,117	1,113	1,113	1,125	1,127	1,124	1,165
1,000-0,710	1,066	1,102	1,111	1,110	1,099	1,104	1,104	1,112	1,112	1,104	1,141
0,710-0,630	1,059	1,092	1,104	1,101	1,090	1,094	1,094	1,101	1,104	1,094	1,123
0,630-0,500	1,051	1,083	1,097	1,095	1,082	1,080	1,080	1,09	1,096	1,085	1,107
0,500-0,400	1,043	1,071	1,089	1,088	1,070	1,071	1,071	1,076	1,087	1,075	1,09
0,400-0,315	1,036	1,059	1,076	1,075	1,059	1,061	1,061	1,064	1,072	1,066	1,071



Abbildung 6-34: Mittelwerte der zusammengefassten Parameter für die Sphärizitäten F_{S,F,n} des Natursandes sowie der Kalksteinund Basaltbrechsande



Abbildung 6-35: Mittelwerte der zusammengefassten Parameter für die Sphärizitäten F_{S,Ä,n} des Natursandes sowie der Kalksteinund Basaltbrechsande

Die **Tabellen 6-21** und **6-22** enthalten die Kubizitäten  $F_{Kub,\delta,n}$  der für die Betonuntersuchungen verwendeten Sande. In den **Abbildungen 6-36** und **6-37** sind diese graphisch dargestellt.

Kornklasse					Kub	izität F	Kub,F				
Romkiasse	NS	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,429	1,530	1,501	1,602	1,552	1,705	1,464	1,505	1,526	1,613	1,792
2,000-1,600	1,392	1,473	1,472	1,532	1,519	1,663	1,464	1,476	1,507	1,574	1,722
1,600-1,000	1,354	1,432	1,509	1,484	1,486	1,487	1,439	1,474	1,485	1,542	1,653
1,000-0,710	1,296	1,364	1,448	1,443	1,428	1,414	1,433	1,449	1,441	1,45	1,593
0,710-0,630	1,257	1,344	1,413	1,434	1,386	1,363	1,404	1,433	1,42	1,418	1,534
0,630-0,500	1,241	1,322	1,390	1,419	1,369	1,331	1,395	1,418	1,422	1,404	1,478
0,500-0,400	1,229	1,309	1,363	1,383	1,339	1,308	1,353	1,383	1,394	1,381	1,395
0,400-0,315	1,226	1,319	1,334	1,349	1,311	1,306	1,332	1,352	1,371	1,363	1,332

Tabelle 6-21:Kubizitäten F_{Kub,F} des Natursandes sowie der Kalkstein- und<br/>Basaltbrechsand

Tabelle 6-22:	Kubizitäten F _{Kub,Ä} des Natursandes sowie der Kalkstein- und
	Basaltbrechsande

Kornklasse					Kub	izität F	Kub,Ä				
Konnkiasse	NS	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,316	1,406	1,411	1,439	1,466	1,489	1,347	1,366	1,292	1,352	1,552
2,000-1,600	1,298	1,381	1,388	1,414	1,402	1,438	1,344	1,327	1,303	1,438	1,502
1,600-1,000	1,244	1,385	1,385	1,389	1,398	1,397	1,359	1,351	1,326	1,371	1,487
1,000-0,710	1,232	1,382	1,378	1,375	1,371	1,400	1,358	1,358	1,340	1,339	1,459
0,710-0,630	1,229	1,383	1,369	1,361	1,352	1,396	1,354	1,341	1,352	1,333	1,430
0,630-0,500	1,227	1,363	1,360	1,352	1,350	1,361	1,340	1,337	1,351	1,324	1,409
0,500-0,400	1,232	1,351	1,347	1,339	1,330	1,350	1,332	1,325	1,352	1,312	1,382
0,400-0,315	1,249	1,355	1,350	1,340	1,335	1,353	1,327	1,326	1,364	1,315	1,359



Abbildung 6-36: Mittelwerte der zusammengefassten Parameter für die Kubizitäten F_{Kub,F} des Natursandes sowie der Kalkstein- und Basaltbrechsande



Abbildung 6-37: Mittelwerte der zusammengefassten Parameter für die Kubizitäten F_{Kub,Ä} des Natursandes sowie der Kalkstein- und Basaltbrechsande

Die **Tabellen 6-23** und **6-24** enthalten die Konkavitäten  $F_{Kon,\delta,n}$  der für die Betonuntersuchungen verwendeten Sande. In den **Abbildungen 6-38** und **6-39** sind diese graphisch dargestellt.

Kornklasse	Konkavität F _{Kon,F}										
	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,484	1,599	1,572	1,677	1,633	1,793	1,538	1,571	1,595	1,699	1,914
2,000-1,600	1,438	1,536	1,541	1,605	1,586	1,739	1,540	1,544	1,579	1,654	1,836
1,600-1,000	1,405	1,490	1,578	1,551	1,552	1,550	1,504	1,544	1,550	1,619	1,754
1,000-0,710	1,338	1,412	1,514	1,505	1,484	1,466	1,495	1,510	1,501	1,513	1,773
0,710-0,630	1,291	1,384	1,471	1,496	1,438	1,408	1,461	1,490	1,475	1,474	1,610
0,630-0,500	1,275	1,363	1,449	1,484	1,417	1,376	1,452	1,474	1,475	1,459	1,543
0,500-0,400	1,258	1,343	1,412	1,438	1,379	1,344	1,398	1,431	1,443	1,429	1,444
0,400-0,315	1,251	1,347	1,380	1,397	1,346	1,336	1,374	1,392	1,412	1,408	1,370

Tabelle 6-23:Konkavitäten FKon,Fdes Natursandes sowie der Kalkstein- und<br/>Basaltbrechsande

Tabelle 6-24:	Konkavitäten F _{Kon,Ä} des Natursandes sowie der Kalkstein- und
	Basaltbrechsande

Kornklasse	Konkavität F _{Kon,Ä}										
	NS	K02K	K02oK	K08K	K08oK	K02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,357	1,472	1,477	1,509	1,536	1,553	1,415	1,430	1,416	1,403	1,646
2,000-1,600	1,329	1,439	1,451	1,478	1,464	1,506	1,400	1,389	1,414	1,506	1,589
1,600-1,000	1,281	1,442	1,445	1,451	1,456	1,455	1,420	1,413	1,443	1,429	1,566
1,000-0,710	1,269	1,431	1,437	1,434	1,422	1,455	1,416	1,414	1,399	1,391	1,529
0,710-0,630	1,262	1,428	1,423	1,415	1,397	1,443	1,408	1,394	1,383	1,384	1,493
0,630-0,500	1,261	1,401	1,412	1,403	1,393	1,405	1,391	1,385	1,381	1,366	1,464
0,500-0,400	1,260	1,385	1,397	1,386	1,367	1,388	1,379	1,369	1,359	1,349	1,428
0,400-0,315	1,274	1,381	1,393	1,383	1,365	1,384	1,366	1,361	1,360	1,353	1,395







Abbildung 6-39: Mittelwerte der zusammengefassten Parameter für die Konkavitäten F_{Kon,Ä} des Natursandes sowie der Kalksteinund Basaltbrechsande
#### 7 Ergebnisse der Asphaltuntersuchungen

#### 7.1 Hohlraumgehalt und fiktiver Hohlraumgehalt

Die Asphaltbetone wurden mit drei verschiedenen Bindemittelgehalten hergestellt, deren Hohlraumgehalte in **Tabelle 7-1** angegeben und in **Abbildung 7-1** graphisch dargestellt sind.

Die Splittmastixasphalte wurden für die Grauwacke- und Basaltbrechsande mit jeweils unterschiedlichen Bindemittelgehalten hergestellt. Dabei ergaben sich die in **Tabelle 7-2** angegebenen und in **Abbildung 7-2** graphisch dargestellten Hohlraumgehalte.

Bindemittel-		Hohlraumgehalt [Vol%]										
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02		
6,5	3,4	3,5	3,2	4,1	3,6	3,4	3,4	3,5	3,5	3,9		
5,9	3,8	4,0	4,3	3,9	5,2	3,8	4,6	4,6	4,8	5,4		
5,6	3,6	4,5	4,8	4,6	5,9	4,1	5,3	5,2	5,2	6,5		

Tabelle 7-1: Hohlraumgehalte der Asphaltbetone

|--|

Bindemittel-	Hohlraumgehalt [Vol%]											
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02		
7,0	2,9	2,8	3,1	2,7	2,9	3,3	3,2	3,4	3,2	2,8		
6,5	3,1	3,3	3,4	3,4	3,4	3,2	3,6	3,5	3,5	3,7		
6,1	3,5	3,4	4,0	3,8	4,7							
6,0						6,2	5,5	5,5	5,1	6,1		
5,8	5,3	4,8	4,9	4,7	5,6							



Abbildung 7-1: Hohlraumgehalte der Asphaltbetone





Die rechnerisch ermittelten fiktiven Hohlraumgehalte der Mineralstoffgemische der untersuchten Asphaltbetone sind in **Tabelle 7-3** angegeben und in **Abbildung 7-3** graphisch dargestellt.

Die entsprechenden Werte der untersuchten Splittmastixasphalte enthält **Tabelle 7-4** und sind in **Abbildung 7-4** graphisch dargestellt.

Die fiktiven Hohlraumgehalte der Asphalte mit optimalen Bindemittelgehalten sind in den Tabellen fett gedruckt.

Bindemittel-	Fiktiver Hohlraumgehalt [Vol%]											
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02		
6,5	19,24	19,31	19,07	19,86	19,45	19,89	19,88	19,96	19,92	20,28		
5,9	18,32	18,48	18,74	18,37	19,31	18,80	19,55	19,54	19,66	20,19		
5,6	17,42	18,22	18,43	18,32	19,41	18,40	19,39	19,35	19,31	20,41		

 Tabelle 7-3: Fiktive Hohlraumgehalte der Asphaltbetone

Tabelle 7-4:	Fiktive Hohlraum	aehalte der S	plittmastixasphalte

Bindemittel-			Fi	ktiver H	lohlrau	mgeha	lt [Vol'	%]		
gehalt	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
[1VI%]										
7,0	20,9	20,9	21,1	20,8	21,0	21,6	21,4	21,7	21,5	21,2
6,5	20,1	20,2	20,2	20,3	20,3	20,4	20,7	20,6	20,6	20,8
6,1	19,5	19,4	19,9	19,8	20,5					
6,0						21,8	21,1	21,1	20,8	21,7
5,8	20,4	19,9	20,0	19,8	20,6					



Abbildung 7-3: Fiktive Hohlraumgehalte der Asphaltbetone



Abbildung 7-4: Fiktive Hohlraumgehalte der Splittmastixasphalte

Um den Einfluss des verwendeten Brechsandes auf den fiktiven Hohlraumgehalt der Mineralstoffgemische numerisch ausdrücken zu können, wurde eine einfaktorielle Varianzanalyse mit der Gesteinsart des Brechsandes als Faktor durchgeführt. Dabei wurde je Mineralstoffart nur das bezüglich des Bindemittelgehaltes als optimal interpretierte Asphaltgemisch berücksichtigt (vgl. Abschnitt 3). Bei den Asphaltbetonen mit Grauwackebrechsanden wurde ein Bindemittelgehalt von B=5,6 M.-% und bei solchen mit Basaltbrechsanden von B=5,9 M.-% berücksichtigt. Die Ergebnisse sind in **Tabelle 7-5** aufgeführt. Die Ergebnisse der Varianzanalyse sind ausführlich in **Anhang 4** dokumentiert.

Tabelle 7-5:Einfaktorielle Varianzanalyse der fiktiven Hohlraumgehalte der<br/>Asphalte; Faktor: Gesteinsart

Eigenschaft	Asphaltart	F	Signifikanz
Fiktiver Hohl- raumgehalt H _{M,bit}	AB 0/11 S	9,386	0,015
	SMA 0/11 S	17,61	0,003

#### 7.2 Verformungswiderstand

Die Asphalte wurden mit den als optimal festgelegten Bindemittelgehalten im einaxialen Druckschwellversuch geprüft.

Nahezu alle Splittmastixasphalte waren mit weniger als 10 kLW zerstört. Daher wurde die Dehnung nach 4 kLW als zusätzliches Kriterium gewählt.

Die Dehnungsrate  $\varepsilon_w^*$  und die Dehnungen  $\varepsilon_{10}$  bzw.  $\varepsilon_4$  nach 10 bzw. 4 kLW sind in den **Tabellen 7-6** und **7-7** angegeben und in den **Abbildungen 7-5** und **7-6** graphisch dargestellt.

Tabelle 7-6:Verformungseigenschaften der Asphaltbetone im einaxialenDruckschwellversuch

Verformungs- eigenschaft		Dehnung $\varepsilon_w^*$ [ $^0/_{00}/10$ kLW] bzw. $\varepsilon_{10}$ [ $^0/_{00}$ ]											
	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02			
$\epsilon_w^*$ bei B=5,6 M%	0,251	0,251	0,67	0,419	0,503								
$\epsilon_w^*$ bei B=5,9 M%						0,251	0,335	0,419	0,568	0,838			
ε ₁₀ bei B=5,6 M%	7,1	6,4	10,6	9,0	15,0								
ε ₁₀ bei B=5,9 M%						6,6	7,6	8,9	10,9	15,0			

Tabelle 7-7:Verformungseigenschaften der Splittmastixasphalte im einaxia-<br/>len DruckschwellversuchVerformungs-Dehnung εw* [⁰/₀₀/10 kLW] bzw. ε₄ [⁰/₀₀]

Verformungs-		Dehnung $\varepsilon_w^*$ [ $^0/_{00}$ /10 kLW] bzw. $\varepsilon_4$ [ $^0/_{00}$ ]											
eigenschaft	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02			
$\epsilon_w^*$ bei B=6,0 M%	0,33	0,544	0,503	1,256	1,65								
$\epsilon_w^*$ bei B=6,5 M%						0,587	0,754	0,619	0,92	0,712			
ε ₄ bei B=6,0 M%	5,2	6,1	5,7	7,9	11,6								
ε ₄ bei B=6,5 M%						6,0	6,8	5,8	7,0	6,3			



Abbildung 7-5: Verformungseigenschaften der Asphaltbetone mit optimalem Bindemittelgehalt im einaxialen Druckschwellversuch



Abbildung 7-6: Verformungseigenschaften der Splittmastixasphalte mit optimalem Bindemittelgehalt im einaxialen Druckschwellversuch

Um den Einfluss des verwendeten Brechsandes auf die Verformungseigenschaften der untersuchten Asphalte numerisch ausdrücken zu können, wurde eine einfaktorielle Varianzanalyse mit der Gesteinsart des Brechsandes als Faktor durchgeführt. Die Ergebnisse sind in **Tabelle 7-8** aufgeführt.

Tabelle 7-8:	Einfaktorielle Varianzanalyse der Verformungseigenschaften der
	Asphalte im einaxialen Druckschwellversuch; Faktor: Gesteins-
	art

Eigenschaft	Asphaltart	F	Signifikanz
£10	AB 0/11 S	0,007	0,935
ε4	SMA 0/11 S	0,598	0,462
o *	AB 0/11 S	0,237	0,640
εw	SMA 0/11 S	0,281	0,610

#### 7.3 Verdichtungswiderstand der Asphalte

Die Verdichtungswiderstände (D-Werte) der Asphalte sind für die untersuchten Bindemittelgehalte in den **Tabellen 7-9** und **7-10** angegeben und in den **Abbildungen 7-7** und **7-8** (für optimale Bindemittelgehalte) graphisch dargestellt. Die Werte für die Asphaltbetone mit optimalem Bindemittelgehalt sind fett gedruckt.

Bindemittel-		D-Wert [21 Nm]											
gehalt [M%] G02K	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02			
5,6	20,0	19,9	20,9	21,8	25,4	19,2	20,0	20,4	20,6	21,2			
5,9	20,0	19,1	20,5	21,4	22,7	19,0	21,7	18,2	19,2	20,5			
6,5	18,3	18,5	18,1	18,0	20,8	18,0	17,9	17,8	17,9	19,5			

Tabelle 7-9:D-Wert der Asphaltbetone mit den Grauwacke- bzw. Basalt-<br/>brechsanden

Tabelle 7-10:	D-Wert der Splittmastixasphalte mit den Grauwacke- und
	Basaltbrechsanden

Bindemittel- D-Wert [21 Nm]										
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
6,5						18,6	18,7	19,2	19,8	21,0
6,1	19,1	18,4	19,6	19,4	21,8					



Abbildung 7-7: D-Werte der Asphaltbetone mit optimalem Bindemittelgehalt



Abbildung 7-8: D-Werte der Splittmastixasphalte mit optimalem Bindemittelgehalt

Um den Einfluss des verwendeten Brechsandes auf den Verdichtungswiderstand der untersuchten Asphalte numerisch ausdrücken zu können, wurde eine einfaktorielle Varianzanalyse mit der Gesteinsart des Brechsandes als Faktor durchgeführt. Die Ergebnisse sind in **Tabelle 7-11** aufgeführt.

Tabelle 7-11:	Einfaktorielle	Varianzanalyse	der D-Werte	der Asphalte
---------------	----------------	----------------	-------------	--------------

Eigenschaft	Asphaltart	F	Signifikanz
D Mort	AB 0/11 S	2,52	1,151
D-weit	SMA 0/11 S	0,077	0,789

#### 7.4 Spaltzugfestigkeitsabfall der Asphaltbetone

Der prozentuale Abfall der Spaltzugfestigkeit nach Wasserlagerung der Asphalte (SZA) mit optimalem Bindemittelgehalt ist in den **Tabellen 7-12** und **7-13** angegeben und in den **Abbildungen 7-9** und **7-10** graphisch dargestellt.

Tabelle 7-12:	Spaltzugfestigkeitsabfall der Asphaltbetone bei optimalem Bin-
	demittelgehalt mit den Grauwacke- und Basaltbrechsanden

Bindemittel-		Spaltzugfestigkeitsabfall [%]										
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02		
5,6	11,1	13,5	15,6	15,3	29,9							
5,9						1,4	0,0	8,7	4,5	15,9		

Tabelle 7-13:	Spaltzugfestigkeitsabfall der Splittmastixasphalte bei optimalem
	Bindemittelgehalt mit den Grauwacke- und Basaltbrechsanden

Bindemittel-		Spaltzugfestigkeitsabfall [%]										
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02		
6,1	4,1	4,7	6,7	6,1	14,1							
6,5						4,2	5,5	10,4	9,6	15,8		



Abbildung 7-9: Spaltzugfestigkeitsabfall (SZA) der Asphaltbetone mit optimalem Bindemittelgehalt



Abbildung 7-10: Spaltzugfestigkeitsabfall (SZA) der Splittmastixasphalte mit optimalem Bindemittelgehalt

Um den Einfluss der verwendeten Brechsande auf den SZA der untersuchten Asphalte numerisch ausdrücken zu können, wurde eine einfaktorielle Varianzanalyse mit der Mineralstoffart des Brechsandes als Faktor durchgeführt. Die Ergebnisse sind in **Tabelle 7-14** aufgeführt.

Eigenschaft	Asphaltart	F	Signifikanz
Spaltzugfestigkeitsabfall	AB 0/11 S	6,291	0,036
SZA	SMA 0/11 S	0,517	0,493

Tabelle 7-14: Einfaktorielle Varianzanalyse des SZA der Asphalte

#### 7.5 Stabilität und Fließwert der Asphaltbetone

Die Stabilitäten und Fließwerte der Asphaltbetone sind in den **Tabellen 7-15** und **7-16** angegeben. Die Ergebnisse für die Asphalbetone mit optimalem Bindemittelgehalt sind fett gedruckt. Diese sind in den **Abbildungen 7-11** und **7-12** graphisch dargestellt.

Tabelle 7-15:Stabilitäten der Asphaltbetone mit den Grauwacke- und Basalt-<br/>brechsanden

Bindemittel-		Stabilität [kN] der Asphaltbetone										
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02		
5,6	11,2	11,0	11,2	11,0	11,4	9,8	9,2	11,4	11,5	12,4		
5,9	11,6	11,6	12,4	11,5	12,2	11,6	9,7	11,1	10,8	13,4		
6,5	10,3	9,6	10,3	10,0	10,4	10,2	11,5	11,1	10,2	11,8		

Tabelle 7-16:Fließwerte der Asphaltbetone mit den Grauwacke- und<br/>Basaltbrechsanden

Bindemittel-		Fließwert [0,1 mm] der Asphaltbetone										
gehalt [M%]	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02		
5,6	48,0	48,0	43,0	42,5	40,5	39,0	40,0	42,5	43,5	40,0		
5,9	46,5	52,0	59,0	50,5	50,0	42,5	34,0	41,0	44,5	41,5		
6,5	54,5	56,0	58,5	52,0	59,0	47,0	51,5	58,5	55,0	51,0		



Abbildung 7-11: Stabilitäten der Asphaltbetone mit optimalem Bindemittelgehalt



Abbildung 7-12: Fließwerte der Asphaltbetone mit optimalem Bindemittelgehalt

Um den Einfluss des verwendeten Brechsandes auf die Stabilität und den Fließwert der untersuchten Asphaltbetone numerisch ausdrücken zu können, wurde eine einfaktorielle Varianzanalyse mit der Mineralstoffart des Brechsandes als Faktor durchgeführt. Die Ergebnisse sind in **Tabelle 7-17** aufgeführt.

## Tabelle 7-17:Einfaktorielle Varianzanalyse der Stabilitäten und Fließwerte<br/>der Asphaltbetone

Eigenschaft	Asphaltart	F	Signifikanz
Stabilität	<b>AB 0/11 S</b>	0,076	0,79
Fließwert		2,489	0,153

#### 8 Ergebnisse der Betonuntersuchungen

#### 8.1 Frischbetoneigenschaften

Die Ergebnisse der Frischbetonuntersuchungen sind in **Tabelle 8-1** für B25 und in **Tabelle 8-2** für B55 enthalten. Die Referenzmischung erreichte ohne Fließmittel nur die Konsistenzklasse KS, so dass bereits bei diesem Beton 0,45 % des Fließmittels Muraplast FF zugegeben wurde. Damit wurde ein Ausbreitmaß von nur 39 cm erreicht, dies entspricht der Konsistenzklasse KP (plastisch). Da nahezu alle anderen Betone steifer waren, war die Messung des Ausbreitmaßes nicht zielführend, und es wurde bei allen Betonen anstelle des Ausbreitmaßes das Verdichtungsmaß bestimmt.

Verwendeter Sand	Verdich- tungsmaß	Konsis- tenz*	Rohdichte	LP-Gehalt	Temperatur
			kg/m³	%	°C
Natursand	1,09	KP/C2	2550	0,5	23,7
K02K	1,38	KS/C1	2590	1,4	31,1
K02oK	1,12	KP/C2	2550	0,8	26,8
K08K	1,18	KP/C2	2470	0,6	28,1
K08K**	1,33	KS/C1	2530	1,7	25,5
K08oK	1,14	KP/C2	2550	0,45	26,3
K02	1,20	KS/C2	2540	1,1	25,3
B02K	1,18	KP/C2	2630	0,45	28,0
B02oK	1,21	KS/C2	2600	0,9	23,7
B02oK**	1,24	KS/C2	2600	1,3	26,1
B08K	1,25	KS/C2	2620	1,3	25,6
B08oK	1,12	KP/C2	2620	0,8	25,6
B02	1,21	KS/C2	2620	1,0	26,2

Tabelle 8-1: Frischbetoneigenschaften der Betone B25

* Angabe der Konsistenzklasse nach DIN 1045:1988/DIN 1045-2:2001

** zusätzliche Versuche mit Verwendung des Brechsands im Originalzustand, d.h. mit vollem Anteil an Mehlkorn (s. Tabelle 3-12)

Tabelle 8-2: Frischbetoneigenschaften der Betone B55

Verwendeter Sand	Verdich- tungsmaß	Konsis- tenz*	Rohdichte	LP-Gehalt	Temperatur
	_		kg/m³	%	°C
Natursand	1,23	KS/C2	2600	1,4	23,6
K02oK	1,11	KP/C2	2540	0,8	25,7
B02	1,21	KS/C2	2620	1,0	26,2
B02oK	1,21	KS/C2	2600	0,9	23,7

* Angabe der Konsistenzklasse nach DIN 1045:1988/DIN 1045-2:2001

#### 8.2 Festbetoneigenschaften

Die Eigenschaften der Festbetone sind in Tabelle 8-3 für die Betone B25 und in Tabelle 8-4 für die Betone B55 zusammengestellt. Die angestrebte Betonfestigkeitsklasse B25 -in der Eignungsprüfung werden ≥ 35 MPa gefordert- wird von allen Betonen sicher erreicht. Aufgrund des relativ hohen Zementgehalts, der aus Verarbeitungsgründen gewählt werden musste, war dies auch zu erwarten. Tendenziell sind die Festigkeiten der Betone mit Brechsand gegenüber denen mit Natursand etwas höher.

Verwen- deter Sand	Dru	Druckfestig- keit		Spaltzug- festigkeit		Dy	n. E-Mo	dul	Carbona- tisierungs- tiefe		Wasser- eindrin- gung
		MPa		МРа		МРа			m	m	mm
	2 d	7 d	28 d	28 d	90 d	7 d*	14 d	28 d	28 d	90 d	28 d
Natursand	13	32	46	4,4	4,3	38380	39330	41070	0,1	0,3	16
K02K	15	32	47	4,7	4,7	44570	42520	45410	1,0	2,2	26
K02oK	20	36	50	5,2	4,7	44840	45093	45410	1,6	3,5	21
K08K	18	35	49	4,0	4,4	47310	47730	49090	0,1	2,2	10
K08K***	18	35	51	3,8	3,9	44950	42000	44960	1,0	2,3	18
K08oK	14	31	47	3,6	4,1	41940	42980	45290	0,3	3,3	26
K02	13	31	49	4,2	4,3	45780	45840	41070	1,0	3,1	31
B02K	13	27	44	3,5	4,2	38850	39700	39700	1,0	3,4	23
B02oK	15	29	48	4,8	5,1	38790	38340	40500	0,1	2,7	99
B02oK***	14	27	45	4,8	4,9	42080	42122	42820	0,9	2,0	22
B08K	12	23	43	3,6	3,7	37120	42080	41100	2,1	3,1	12
B08oK	20**	32	49	3,9	4,7	41610	41920	44220	1,0	2,6	19
B02	16	28	45	4,1	4,4	36700	39222	40760	0,1	2,5	7

Tabelle 8-3: Festbetoneigenschaften der Betone B25

* geprüft nach Wasserlagerung** geprüft nach drei Tagen

*** zusätzliche Versuche mit Verwendung des Brechsands im Originalzustand, d.h. mit vollem Anteil an Mehlkorn (s. Tabelle 3-12)

Die erforderliche Druckfestigkeit für eine Eignungsprüfung (60 MPa + Vorhaltemaß) wurde beim B55 nicht ganz erreicht, das beeinträchtigt aber nicht die Aussagekraft der Ergebnisse. Entscheidend dafür sind die Vergleiche zwischen den Betonen mit Brechsanden aus der Vertikalprallbrecher-Herstellung und den Betonen mit Natursand bzw. mit dem Brechsand herkömmlicher Herstellung.

Verwen- deter Sand	Druckfestig- keit		Spaltzug- festigkeit		Dy	n. E-Mo	dul	Carbo sieru tie	onati- Ings- efe	Wasser- eindrin- gung	
	МРа		М	Pa	МРа			m	m	mm	
	2 d	7 d	28 d	28 d	90 d	7 d*	14 d	28 d	28 d	90 d	28 d
Natursand	30	45	63	4,8	5,0	49620	51320	51270	0	0	14
K02oK	32	47	63	6,1	5,2	44130	46190	47250	0,3	1,8	13
B02	32	41	63	5,6	5,3	41880	45950	46500	0	0,8	18
B02oK	28	42	62	6,7	5,4	42330	45244	46720	0	1,0	24

 Tabelle 8-4: Festbetoneigenschaften der Betone B55

* geprüft nach Wasserlagerung

#### 9 Funktionaler Zusammenhang zwischen Brechsand- und Asphalteigenschaften

Im Folgenden werden nur die statistisch ermittelten Eigenschaften derjenigen Variablen angegeben, die in der multiplen linearen Regression eine maximale Funktionalität mit der jeweiligen Eigenschaft des Asphaltes ergaben.

Um die funktionalen Zusammenhänge zu verdeutlichen, sind die in den Tabellen erläuterten Variablen zusätzlich graphisch dargestellt. Die Abkürzungen AV und UV bedeuten abhängige bzw. unabhängige Variable. Auf die graphische Darstellung und die Angabe des Konfidenzintervalls der Regressionsvariablen "Gestein" wird verzichtet.

Eine Zusammenfassung der Ergebnisse der multiplen linearen Regression ist **An-hang 5** zu entnehmen.

#### 9.1 Fiktiver Hohlraumgehalt

In den **Tabellen 9-1** und **9-2** ist der Einfluss der Brechsandeigenschaften auf den fiktiven Hohlraumgehalt der Asphalte anhand der Ergebnisse der multiplen linearen Regression angegeben. Die relevanten Variablen sind in den **Abbildungen 9-1** bis **9-6** graphisch dargestellt.

Tabelle 9-1:	Funktionaler Zusammenhang zwischen den Brechsandeigen-
	schaften und dem fiktiven Hohlraumgehalt der Asphaltbetone

Parameter	Bezeich-	Wert	bs	Signif.	Konfidenz- intervall		Partie	elle Korrela	ation
	nung				Min	Wert	Var	Var _ĸ	Wert
		UV: Mec	hanische	Brechsan	deigensc	haft; AV:	H _{M,bit}		
r		0,934		< 1 ⁰ / ₀₀					
UV	A _{KM}		0,585	0,004	0,972	3,363			
UV	Gestein		0,638	0,002					
	UV	: Photoo	otische B	rechsande	igenscha	lft; δ=d _F ; .	AV: H _{M,bit}		
r		0,956		< 1 ⁰ / ₀₀			F	E. G	0.63
UV	F _{S,F,2}		0,726	0,004	25,87	64,36	^I S,F,2	I Kub,F,1, O	0,03
UV	Gestein		1,126	< 1 ⁰ / ₀₀			$F_{Kub,F,1}$	$F_{S,F,2}, G$	0,34
	UV	: Photoop	otische B	rechsande	igenscha	ift; δ=d _Ä ;	AV: H _{M,bit}		
r		0,939		0,001			E.v.	E G	0 58
UV	F _{S,Ä,1}		0,590	0,003	10,9	35,1	▪ S,A,1	' _{Kub,A,1} , G	0,50
UV	Gestein		0,814	0,001			F _{Kub,Ä,1,} M	F _{S,Ä,1}	0,17

Tabelle 9-2:Funktionaler Zusammenhang zwischen den Brechsandeigen-<br/>schaften und dem fiktiven Hohlraumgehalt der Splittmastix-<br/>asphalte

Parameter	Bezeich-	Wert	bs	Sig.	Konfidenz- intervall		Partie	lle Korrela	ation
	inang				Min	Wert	Var	Var _ĸ	Wert
	U١	/: Mechar	nische B	rechsand	leigenscl	naft; AV:	H _{M,bit}		
r		0,920		0,001					
UV	A _{KM}		0,405	0,03	0,118	1,765			
UV	Gestein		0,762	0,001					
	UV: P	hotooptis	che Bre	chsandei	genscha	ft; δ=d _F ; Α	V: H _{M,bit}		
r		0,954		< 1 ⁰ / ₀₀			F _{S.F.2}	F _{Kub.F.1} , G	0,71
UV	F _{S,F,2}		0,561	0,004	9,531	34,204	- / /		
				. 0.			$F_{Kub,F,1}$	F _{S,F,2} , G	0,23
UV	Gestein		1,131	< 1 [°] / ₀₀					
	UV: P	hotooptis	che Bre	chsandei	genscha	ft; δ=d _Ă ; Α	AV: H _{M,bit}		
r		0,991		< 1 ⁰ / ₀₀			Feita	$F_{Kub,\ddot{A},2}$	0 48
UV	F _{Kub,Ä,2}		-0,772	0,001	-18,5	-7,9	• 5,A,T	F _{Kon,Ä,1}	0,10
UV	F _{Kon,Ä,1}		1,098	< 1 ⁰ / ₀₀	4,3	7,4	F _{Kub,Ä,2}	Faird	0.43
UV	Gestein		0,745	< 1 ⁰ / ₀₀			$F_{Kon,\ddot{A},1}$	• 5,A,1	0,40



Abbildung 9-1: Fiktiver Hohlraumgehalt der Asphaltbetone und ihn beeinflussende Brechsandeigenschaft Abrieb in der Kugelmühle



Abbildung 9-2: Fiktiver Hohlraumgehalt der Asphaltbetone und ihn beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )



Abbildung 9-3: Fiktiver Hohlraumgehalt der Asphaltbetone und ihn beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\ddot{A}}$ )



Abbildung 9-4: Fiktiver Hohlraumgehalt der Splittmastixasphalte und ihn beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle



Abbildung 9-5: Fiktiver Hohlraumgehalt der Splittmastixasphalte und ihn beeinflussende photooptische Brechsandeigenschaft ( $\delta$  = d_F)



Abbildung 9-6: Fiktiver Hohlraumgehalt der Splittmastixasphalte und ihn beeinflussende photooptische Brechsandeigenschaften ( $\delta = d_{\ddot{a}}$ )

#### 9.2 Verformungswiderstand

#### 9.2.1 Dehnung nach 10 kLW bzw. 4 kLW

In den **Tabellen 9-3** und **9-4** ist der Einfluss der Brechsandeigenschaften auf  $\varepsilon_{10}$  (der Asphaltbetone) und  $\varepsilon_4$  (der Splittmastixasphalte) anhand der Ergebnisse der multiplen linearen Regression angegeben. Unter den verwendeten Kriterien des verwendeten Regressionsalgorithmus konnte zwischen den mechanischen Brechsandeigenschaften und  $\varepsilon_4$  kein linearer Zusammenhang berechnet werden. Die relevanten Variablen sind in den **Abbildungen 9-7** bis **9-11**graphisch dargestellt.

Parameter	Bezeich-	Wert	bs	Sig.	Konfi inte	Konfidenz- intervall		lle Korre	lation
	nang				Min	Wert	Var	Var _ĸ	Wert
	U١	: Mecha	anische	Brechsa	ndeigensc	haft; AV: ε	10		
r		0,940		< 1 ⁰ / ₀₀					
UV	A _{KM}		0,940	< 1 ⁰ / ₀₀	9,2	16,9			
	UV: PI	hotoopt	ische B	rechsand	leigenscha	hft; δ=d _F ; Α	V: ε ₁₀		
r		0,976		< 1 ⁰ / ₀₀				FSE2	0.91
UV	F _{Kub,F,1}		0,948	< 1 ⁰ / ₀₀	31,2	47,2		0,1 ,2	,
							F _{S,F,2}	F _{Kub,F,1}	0,31
UV	F _{Kub,F,2}		0,2	0,045	0,8	53,2			
	UV: PI	notoopt	ische B	rechsand	leigenscha	ft; δ=d _Ä ; A	V: ε ₁₀		
r		0,992		<1 ⁰ / ₀₀			Exam X a	Fait	0.52
UV	F _{Kon,Ä,2}		1,095	< 1 ⁰ / ₀₀	47,7	63,5	• KON,A,Z	• 5,A,T	0,02
UV	F _{Kon,Ä,3}		0,215	0,021	-61,2	-7,2	E.v.	E. v.	0.30
UV	RRSBn _ä		-0,158	0,034	-7,6	-4,2	▪ S,A,1	▪ Kon,A,2	0,39

Tabelle 9-3: Funktionaler Zusammenhang zwischen den Brechsandeigenschaften und der Dehnung des Asphaltbetons nach 10 kLW (ε₁₀)

### Tabelle 9-4: Funktionaler Zusammenhang zwischen den photooptischen Brechsandeigenschaften und der Dehnung des Splittmastixasphaltes nach 4 kLW (ε₄)

Parameter	Bezeichnung	Wert	b _s	Sig.	Konfidenz- intervall		Partielle Korrel		
					Min	Wert	Var	Var _ĸ	Wert
	UV: PI	notoopti	ische Br	echsand	leigensch	aft; δ=d _F ;	AV: ε4		
r		0,752		0,012			$F_{S,F,2}$	F _{Kub,F,1}	0,66
UV	F _{S,F,2}		0,752	0,012	28,9	173,0	F _{Kub,F,1}	$F_{S,F,2}$	0,09
	UV: PI	notoopti	sche Br	echsand	leigensch	aft; δ=d _Ä ;	AV: ε4		
r		0,724		0,018			F _{S,Ä,1}	F _{Kon,Ä,1}	0,53
UV	F _{S,Ä,1}		0,724	0,018	13,6	108,2	F _{Kon,Ä,1}	F _{S,Ä,1}	0,35



Abbildung 9-7:ε₁₀ und beeinflussende mechanische BrechsandeigenschaftAbrieb in der Kugelmühle



Abbildung 9-8:  $\epsilon_{10}$  und beeinflussende photooptische Brechsandeigenschaften ( $\delta = d_F$ )



Abbildung 9-9:  $\epsilon_{10}$  und beeinflussende photooptische Brechsandeigenschaften ( $\delta = d_{\ddot{A}}$ )



Abbildung 9-10:  $\epsilon_4$  und beeinflussende photooptische Brechsandeigenschaften ( $\delta = d_F$ )



Abbildung 9-11:  $\epsilon_4$  und beeinflussende photooptische Brechsandeigenschaften ( $\delta = d_{\ddot{A}}$ )

#### 9.2.2 Dehnungsrate der Asphalte

In den **Tabellen 9-5** und **9-6** ist der Einfluss der Brechsandeigenschaften auf die Dehnungsrate  $\varepsilon_w^*$  anhand der Ergebnisse der multiplen linearen Regression angegeben. Unter den verwendeten Kriterien des verwendeten Regressionsalgorithmus konnte zwischen den mechanischen Brechsandeigenschaften und  $\varepsilon_w^*$  der Splittmastixasphalte kein linearer Zusammenhang berechnet werden. Die relevanten Variablen sind in den **Abbildungen 9-12** bis **9-16** graphisch dargestellt

Tabelle 9-5:Funktionaler Zusammenhang zwischen den Brechsand-<br/>eigenschaften und der Dehnungsrate  $\varepsilon_w^*$  des Asphaltbetons

Parameter	Bezeichnung	Wert	b _s	Signif.	Konfidenz- intervall		Partielle Korrelation		
		Min		Wert	Var	Var _κ	Wert		
	UV: Mechanische Brechsandeigenschaft; AV: $\epsilon_w^*$								
r		0,789		0,007					
UV	A _{KM}		0,789	0,007	2,5	11,1			
	UV: Ph	otooptis	sche Bre	chsande	eigensch	haft; δ=d _⊦	; ΑV: ε _w *		
r		0,836		0,003			$F_{Kub,F,1}$	$F_{S,F,2}$	0,8
UV	F _{Kub,F,1}		0,836	0,003	10,0	32,8	$F_{S,F,2}$	$F_{Kub,F,1}$	0,27
	UV: Ph	otooptis	sche Bre	chsande	eigensch	aft; δ=d _⊭	; <b>ΑV</b> : ε _w *		
r		0,914		0,002			E	Ε	0.64
111/	F		0 700	0.000	11.4	24.4	ſ [⊷] Kon,Ä,2	rs,ä,1	0,04
UV	<b>Γ</b> Kon,Ä,2		0,728	0,002	11,4	34,4	F	F	0.40
UV	FG _Ä		0,468	0,019	0,6	5,1	F _{S,Ä,1}	r _{Kon,Ä,2}	0,40



Abbildung 9-12:  $\epsilon_w^*$  der Asphaltbetone und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle

Tabelle 9-6:Funktionaler Zusammenhang zwischen den photooptischen<br/>Brechsandeigenschaften und der Dehnungsrate  $\varepsilon_w^*$  des Splitt-<br/>mastixasphaltes

Parameter	Bezeichnung	Wert	b _S	Signif.	Konfidenz- intervall		lenz- vall		lation
					Min	Wert	Var	Var _ĸ	Wert
	UV: Ph	otooptis	sche Bre	echsande	eigensch	naft; δ=d	_F ; ΑV: ε _w *		
r		0,702		0,024			F _{Kub,F,3}	F _{S,F,2}	0,33
UV	F _{S,F,2}		0,702	0,024	3,518	37,0	F _{S,F,2}	$F_{Kub,F,3}$	0,07
	UV: Ph	otooptis	sche Bre	chsande	eigensch	haft; δ=d	ä; AV: ε _w *		
r		0,678		0,031			F _{S,Ä,1}	F _{Kon,Ä,1}	0,41
UV	F _{S,Ä,1}		0,678	0,031	1,4	23,1	F _{Kon,Ä,1}	F _{S,Ä,1}	0,23
U	V: Mechanisch	e oder p	hotoopt	tische Br	echsand	deigenso	chaft; δ=d	ά; <b>ΑV:</b> ε _w *	
r (kombi- niert)		0,881		0,005			E.v.	<b>F</b>	0.41
	Faxe		0.678	0.031	14	23.1	└ S,A,1	r Kon,A,2	0,41
	' S,A,1		0,070	0,001	1,7	20,1	Ev so	Faxa	0.23
UV	FZ	к	(eine sigi	nifikante	Korrelatio	on	I Kon,A,2	^I S,A,1	0,20



Abbildung 9-13:  $\epsilon_w^*$  der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )



Abbildung 9-14:  $\epsilon_w^*$  der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\ddot{A}}$ )



Abbildung 9-15:  $\varepsilon_w^*$  der Splittmastixasphalte und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )



Abbildung 9-16:  $\epsilon_w^*$  der Splittmastixasphalte und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\ddot{A}}$ )

#### 9.3 Verdichtungswiderstand der Asphalte

In den **Tabellen 9-7** und **9-8** ist der Einfluss der Brechsandeigenschaften auf den D-Wert der Asphalte anhand der Ergebnisse der multiplen linearen Regression angegeben. Die relevanten Variablen sind in den **Abbildungen 9-17** bis **9-22** graphisch dargestellt.

Tabelle 9-7:	Funktionaler Zusammenhang zwischen den Brechsandeigen-
	schaften und dem Verdichtungswiderstand (D-Wert) der Asphalt-
	betone

Parameter	Bezeichnung	Wert	bs	Signif.	Konfidenzintervall		Partielle Korrelation			
					Min	Wert	Var	Var _κ	Wert	
UV: Mechanische Brechsandeigenschaft; AV: D-Wert										
r		0,732		0,068						
UV	Акм		0,551	0,073	-0,6	10,3				
UV	Gestein		0,581	0,062						
UV: Photooptische Brechsandeigenschaft; δ=d _F ; AV: D-Wert										
r		0,827		0,003			$F_{S,F,2}$	$F_{Kub,F,1}$	0,79	
UV	F _{S,F,2}		0,827	0,003	54,4	189,9	$F_{Kub,F,1}$	$F_{S,F,2}$	0,28	
UV: Photooptische Brechsandeigenschaft; $\delta$ =d _Å ; AV: D-Wert										
r		0,757		0,011			F _{Kub,Ä,1}	F _{S,Ä,1}	0,38	
UV	F _{Kub,Ä,1}		0,757	0,011	5,0	28,6	F _{S,Ä,1}	F _{Kub,Ä,1}	0,04	

# Tabelle 9-8:Funktionaler Zusammenhang zwischen den Brechsandeigen-<br/>schaften und dem Verdichtungswiderstand (D-Wert) der Splitt-<br/>mastixasphalte

Parameter	Bezeichnung	Wert	b _s	Signif.	Konfidenzintervall		Partielle Korrelation		
					Min	Wert	Var	Var _ĸ	Wert
UV: Mechanische Brechsandeigenschaft; AV: D-Wert									
r		0,889		0,001					
UV	Акм		0,889	0,001	2,4	5,9			
UV: Photooptische Brechsandeigenschaft; δ=d _F ; AV: D-Wert									
r		0,938		<1 ⁰ / ₀₀			$F_{S,F,1}$	$F_{Kub,F,1}$	0,61
UV	F _{S,F,1}		0,938	<1 ⁰ / ₀₀	27,7	56,6	$F_{Kub,F,1}$	$F_{S,F,1}$	0,09
UV: Photooptische Brechsandeigenschaft; $\delta$ =d _Å ; AV: D-Wert									
r		0,964		<1 ⁰ / ₀₀			F _{S,Ä,1}	F _{Kon,Ä,1}	0,85
UV	F _{S,Ä,1}		0,964	<1 ⁰ / ₀₀	37,0	58,4	F _{Kon,Ä,1}	F _{S,Ä,1}	0,56



Abbildung 9-17: D-Wert der Asphaltbetone und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle



Abbildung 9-18: D-Wert der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )



Abbildung 9-19: D-Wert der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\ddot{A}}$ )



Abbildung 9-20: D-Wert der Splittmastixasphalte und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle



Abbildung 9-21: D-Wert der Splittmastixasphalte und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )



Abbildung 9-22: D-Wert der Splittmastixasphalte und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\ddot{A}}$ )

#### 9.4 Spaltzugfestigkeitsabfall der Asphalte

In den **Tabellen 9-9** und **9-10** ist der Einfluss der Brechsandeigenschaften auf den Spaltzugfestigkeitsabfall der Asphalte anhand der Ergebnisse der multiplen linearen Regression angegeben. Die relevanten Variablen sind in den **Abbildungen 9-23** bis **9-28** graphisch dargestellt.

Doromotor	Bezeichnung	Wert	bs	Signif.	Konfidenzintervall		Partielle Korrelation			
Parameter					Min	Wert	Var	Var _ĸ	Wert	
UV:Mechanische Brechsandeigenschaft; AV: SZA										
r		0,958		<1 ⁰ / ₀₀						
UV	A _{KM}		0,701	<1 ⁰ / ₀₀	16,8	36,5				
UV	Gestein		0,779	<1 ⁰ / ₀₀						
UV: Photooptische Brechsandeigenschaft; δ=d _F ; AV: SZA										
r		0,967		<1 ⁰ / ₀₀			F	-	0.70	
UV	Fs F 2		0.944	<1 ⁰ /00	455.0	747.5	- F _{S,F,2} - F _{Kub,F,1}	Γ _{Kub} ,F,1	0,79	
	- 0,1 ,2		- , -	00		, -		F _{S,F,2}	0,28	
UV	D75/D25 _F		0,287	0,021	13,3	119,6				
UV: Photooptische Brechsandeigenschaft; δ=d _Ä ; AV: SZA										
r		0,890		0,001			F _{S,Ä,2}	F _{Kon,Ä,2}	0,67	
UV	F _{S,Ä,2}		0,890	0,001	416,4	1005,1	F _{Kon,Ä,2}	F _{S,Ä,2}	0,23	

Tabelle 9-9: Funktionaler Zusammenhang zwischen den Brechsandeigenschaf-<br/>ten und dem Spaltzugfestigkeitsabfall (SZA) der Asphaltbetone
# Tabelle 9-10:Funktionaler Zusammenhang zwischen den Brechsandeigen-<br/>schaften und dem Spaltzugfestigkeitsabfall (SZA) der Splitt-<br/>mastixasphalte

<b>_</b>	<b>_</b>			o	Konfiden	zintervall	Partie	lle Korre	ation
Parameter	Bezeichnung	wert	b _s	Signif.	Min	Wert	Var	Var _K	Wert
	UV: Mechanische Brechsandeigenschaft; AV: SZA								
r		0,930		<1 ⁰ / ₀₀					
UV	A _{KM}		0,930	<1 ⁰ / ₀₀	11,5	22,5			
	UV: Pho	otooptis	che Bre	chsande	igenschaft	; δ=d _F ; AV	SZA		
r		0,927		<1 ⁰ / ₀₀			$F_{S,F,1}$	$F_{Kub,F,1}$	0,38
UV	F _{S,F,1}		0,927	<1 ⁰ / ₀₀	101,8	202,5	$F_{Kub,F,1}$	F _{S,F,1}	0,23
	UV: Pho	otooptis	che Bre	chsande	igenschaft	; δ=d _Ä ; AV	SZA		
r		0,925		0,001			F _{S,Ä,1}	F _{Kub,Ä,1}	0,38
uv	Faird		0 900	<1 ⁰ /	107.0	239.0			
	• 5,A,1		0,000	1,700	107,0	200,0	F	Fair	0.23
UV	Gestein		0,368	0,039			▪ Kub,A,1	ſS,Ä,1	0,23



Abbildung 9-23: SZA der Asphaltbetone und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle



Abbildung 9-24: SZA der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )



Abbildung 9-25: SZA der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\ddot{A}}$ )



Abbildung 9-26: SZA der Splittmastixasphalte und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle



Abbildung 9-27: SZA der Splittmastixasphalte und beeinflussende photooptische Brechsandeigenschaften ( $\delta = d_F$ )



Abbildung 9-28: SZA der Splittmastixasphalte und beeinflussende photooptische Brechsandeigenschaften ( $\delta = d_{\ddot{A}}$ )

#### 9.5 Stabilität und Fließwert der Asphaltbetone

In **Tabelle 9-11** ist der Einfluss der Brechsandeigenschaften auf die Stabilität der Asphaltbetone anhand der Ergebnisse der multiplen linearen Regression angegeben. Unter den verwendeten Kriterien des verwendeten Regressionsalgorithmus konnte zwischen den Brechsandeigenschaften und den Fließwerten der Asphaltbetone kein linearer Zusammenhang berechnet werden.

Die relevanten Variablen sind in den Abbildungen 9-29 bis 9-31 graphisch dargestellt.

				Konfide		zintervall	Partielle Korrelatio		ation		
Parameter	Bezeichnung	Wert	b _S	Signif.	Min	Wert	Var	Var _ĸ	Wert		
	UV: Mechanische Brechsandeigenschaft; AV: Stabilität										
r		0,683		0,029							
UV	A _{KM}		0,683	0,029	0,35	5,1					
	UV: Photooptische Brechsandeigenschaft; δ=d _F ; AV: Stabilität										
r		0,896		0,003			F _{Kon.F.1}	F _{S.F.1}	0,8		
UV	F _{Kub,F,1}		-7,09	0,014	-144,7	-22,5	Ford	Eken Ed	0.46		
UV	F _{Kon,F,1}		7,787	0,09	24,5	122,1	• S,F,1	• Kon,F,1	0,40		
UV: Photooptische Brechsandeigenschaft; $\delta$ =d _Å ; AV: Stabilität											
r		0,730		0,017			$F_{Kub,\ddot{A},3}$	F _{Kon,Ä,2}	0,42		
UV	F _{Kub,Ä,1}	0,730		0,017	5,0	37,6	F _{Kon,Ä,2}	F _{Kub,Ä,3}	0,15		

Tabelle 9-11: Funktionaler Zusammenhang zwischen den Brechsandeigen-<br/>schaften und der Stabilität der Asphaltbetone



Abbildung 9-29: Stabilität der Asphaltbetone und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle



Abbildung 9-30: Stabilität der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )



Abbildung 9-31: Stabilität der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\ddot{A}}$ )

#### 10 Beurteilung der Ergebnisse

#### 10.1 Grauwacke- und Basaltbrechsande zur Verwendung in Asphalt

Die ermittelten absoluten Fließzahlen der untersuchten Brechsande erscheinen plausibel. In [3] wurden ähnliche Werte für Brechsande gefunden. Gemäß TP Min-StB [17] liegt die Wiederholgrenze zweier Fließzahlergebnisse mit einer statistischen Sicherheit von 95 % [40] bei 11 %. Das bedeutet, dass mit Ausnahme des Ergebnisses des Fließzahlversuchs am B02 sämtliche Differenzen der Versuchsergebnisse auf Streuungen aus der Probeteilung und aus der Prüfung zurückgeführt werden könnten. Die Fließzahl der untersuchten Brechsande als Bewertungsparameter ist daher als fragwürdig zu bewerten.

Der Abrieb der Brechsande in der Kugelmühle wurde offensichtlich von der Art ihrer Aufbereitung beeinflusst. Geringe Siebweiten des Trennschnitts wirkten sich mindernd auf den Abrieb aus. Die nur mit Kegelbrechern aufbereiteten Sande wiesen wesentlich höhere Abriebwerte auf. Der Abrieb in der Kugelmühle wird mit einer Signifikanz von unter 65 % von der Gesteinsart beeinflusst. Statistisch gesicherte Aussagen zur Spannweite der Ergebnisse liegen bisher nicht vor.

Die Brechsande entsprachen im Anlieferungszustand nicht den Anforderungen an Edelbrechsande gemäß TL Min-StB [2], da die Überkornanteile bei fast allen Sanden zu hoch waren (Tabelle 6-1). Die Sieblinien der von Unter- und Überkorn befreiten Brechsande haben einen ähnlichen Verlauf, was ein Vergleich der Ungleichförmigkeitszahlen unterstreicht (Abbildung 6-3). Durch die photooptische Bestimmung der volumetrischen Korngrößenverteilungen und der damit möglichen Erhöhung der Messpunkte konnten die Feinheitsmerkmale der Brechsande detaillierter dargestellt werden als bei der mechanischen (Sieb-)Analyse. Die für die lineare Re-gression erforderliche einparametrige Formulierung der Korngrößenverteilung wurde wegen der geringen Anzahl der Messpunkte bei der mechanischen Analyse auf die Ungleichförmigkeitszahl begrenzt.

Die Korngrößenverteilungen der Brechsande unterscheiden sich voneinander photooptisch wesentlich stärker als mechanisch bestimmt. Die Spannweite der mechanisch ermittelten Ungleichförmigkeitszahlen ist mit 0,05 (Abbildung 6-3) je Sand demnach auch geringer als die der photooptisch ermittelten mit bis zu 0,09 (Abbildungen 6-10 und 6-11). Die photooptisch gefundenen Parameter RRSBn haben eine Spannweite von über 25 % (Abbildung 6-9).

Die Ergebnisse der photooptischen Kornformanalyse deuten darauf hin, dass sich die Art der Aufbereitung auf die Kornform des hergestellten Brechsandes auswirkt. Kleinere Trennschnitte in der vierten Basalt- bzw. fünften Grauwacke-Brechstufe sowie eine Materialaufgabe ohne Kaskadenstrom führten meist zu relativ großen (ungünstigen) Kornformparametern. Dies gilt hauptsächlich für das Grobkorn der Sande,

wenn der Feret-Durchmesser als Korngrößendefinition festgelegt wurde. Kornformanalysen auf Grundlage des Äquivalentdurchmessers als Korngrößendefinition zeigten ebenfalls Abhängigkeiten von der Art der Aufbereitung, wenn auch weniger deutlich (Abbildungen 6-17 bis 6-22).

Je feiner die Korngrößenbereiche, desto geringer ist die Abhängigkeit der ermittelten Kornformparameter von der Aufbereitungsart. Dies hat zum Teil messtechnische Ursachen. Je kleiner die zu analysierende Partikelprojektionsfläche, desto ungenauer wird die photooptische Kornformbestimmung. Dennoch wurde festgestellt, dass die Werte der Kornformparameter in den verschiedenen Korngrößenklassen unterschiedlich untereinander korrelieren, was messtechnisch nicht begründbar ist. Die Art der Aufbereitung beeinflusst wahrscheinlich die Kornformen der verschiedenen Kornklassen unterschiedlich. Den ausschließlich mit Kegelbrechern hergestellten Brechsanden können im Feinbereich nahezu gleich große oder sogar niedrigere Kornformparameter zugeordnet werden als den anderen mit Vertikalprallbrecher hergestellten Sanden.

Bei der Kornanzahlverteilung **(Abbildungen 6-12** bis **6-16)** unterscheiden sich die Brechsande im Durchmesserbereich zwischen 0,2 und 0,063 mm am deutlichsten. Die Ursache ist möglicherweise die unterschiedliche Trennbarkeit des Unterkorns. Eine Abhängigkeit zur Aufbereitungsart ist nicht offensichtlich.

#### 10.2 Asphalteigenschaften und funktionale Zusammenhänge mit den Brechsandeigenschaften

Die maximalen Korrelationen, die sich, für jeweils beide Korngrößendefinitionen, zwischen den Brechsand- und den Asphalteigenschaften ergaben, sind in **Tabelle 10-1** zusammengefasst.

Die minimalen fiktiven Hohlräume der Mineralstoffgemische wurden bei allen Asphaltbetonvarianten bei einem Bindemittelgehalt von 5,6 M.-% erreicht. Da bei diesem Bindemittelgehalt der Hohlraumgehalt bei vier von fünf Asphalten mit Basaltbrechsand über der Obergrenze gemäß ZTV Asphalt-StB [11] lag, wurde bei diesen Asphalten ein Bindemittelgehalt von 5,9 M.-% als optimal angenommen.

Der fiktive Hohlraumgehalt dieser Asphaltbetone ist offenbar abhängig von der Aufbereitungsart der darin verwendeten Brechsande. Die Spannweiten der Ergebnisse lassen sich nicht alleine mit den Streuungen aus der Probeteilung und der Probekörperherstellung begründen, da ausgehend von einer Wiederholgrenze für Raumdichten nach DIN 1996-7 [32] von 0,019 g/cm³ sich eine Wiederholgrenze für den fiktiven Hohlraum von 0,6 Vol.-% ergibt. Damit liegt die Spannweite der ermittelten fiktiven Hohlräume der Asphaltbetone nach **Tabelle 7-3** mit 2 Vol.-% wesentlich höher.

Als optimaler Bindemittelgehalt wurde bei den Splittmastixasphalten mit Grauwackebrechsanden 6,1 M.-%, bei denen mit Basaltbrechsanden 6,5 M.-% angenommen (**Tabelle 7-4**). Die Ergebnisse scheinen in einer ähnlichen Abhängigkeit zur Aufbereitungsart zu stehen wie die Ergebnisse bei den Asphaltbetonen.

## Tabelle 10-1:Maximale Korrelationen zwischen Brechsandeigenschaften und<br/>Eigenschaften von Asphaltbeton (AB) und Splittmastixasphalt<br/>(SMA)

Asphalteigenschaft		Max. Korrelation r von AB-Eigenschaft mit Brechsandparameter	Max. Korrelation r von SMA-Eigenschaft mit Brechsandparameter
Fiktiver Hohlraum- gehalt	H _{M,bit}	<b>0,956 / F_{S,F,2}</b> (0,939 / F _{S,Ä,1} )	<b>0,991 / F_{Kub,Ä,2}, F_{Kon,Ä,1}</b> (0,954 / F _{S,F,2} )
D-Wert		<b>0,827 / F_{S,F,2}</b> (0,757 / F _{Kub,Ä,1} )	<b>0,964 / F_{S,Ä,1}</b> (0,938 / F _{S,F,1} )
Verformungswider-	ε ₁₀ bzw. ε ₄	<b>0,992 / F_{Kon,Ä,2}, F_{Kon,Ä,3}</b> (0,976 / F _{Kub,F,1} , F _{Kub,F,2} )	<b>0,752 / F_{S,F,2}</b> (0,724 / F _{S,Ä,1} )
schwellversuch	£w*	<b>0,914 / F_{Kon,}ä,1, FG</b> ä (0,836 / F _{Kub,F,1} )	<b>0,881 / FZ, F_{S,Ä,1}</b> (0,702 / F _{S,F,1} )
Spaltzugfestig- keitsabfall	SZA	<b>0,967 / F_{s,ғ,2}</b> (0,958 / А _{км} )	<b>0,930 / А_{км}</b> (0,927 / F _{S,F1} )
Stabilität		<b>0,896 / F_{Kon,F,1}, F_{Kub,F,1}</b> (0,730 / F _{Kub,Ä,2} )	n. b.

Bei der gleichen Wiederholgrenze wie bei den Asphaltbetonen ist die Aussagefähigkeit der erhaltenen Ergebnisse bei den Splittmastixasphalten weniger stark ausgeprägt, was besonders für die Ergebnisse des Splittmastixasphaltes unter Verwendung von Basaltbrechsand gilt (**Abbildung 7-4**). Der im Vergleich zum Asphaltbeton geringere Brechsandanteil im Splittmastixasphalt (**Tabelle 3-7**) macht dieses Ergebnis plausibel.

Die ermittelten Werte der fiktiven Hohlraumgehalte der Asphaltbetone und der Splittmastixasphalte korrelieren dabei unterschiedlich stark mit den Ergebnissen der photooptischen Kornformanalyse. Die maximale Korrelation zwischen dem fiktivem Hohlraumgehalt des Asphaltbetons und den Brechsandeigenschaften ergab sich mit r=0,956 unter Verwendung der Sphärizität  $F_{S,F,2}$  als Regressionsvariable **(Tabelle A5-1** im **Anhang 5)**. Für Splittmastixasphalte wurde sogar ein Wert von r=0,991 erreicht. Die Regressionsvariablen sind hier die Kubizität  $F_{Kub,Ä,2}$  und die Konkavität  $F_{Kon,Ä,1}$ . Jedoch korreliert auch beim Splittmastixasphalt die Sphärizität  $F_{S,F,2}$  mit r=0,954 mit dem fiktiven Hohlraumgehalt. Die Sphärizität zeigt sich somit als dominierender Einflussparameter auf den fiktiven Hohlraumgehalt der Asphalte.

Der große Einfluss der Gesteinsart (**Tabelle A4** im **Anhang 4** mit F=17,61) auf den fiktiven Hohlraumgehalt der Splittmastixasphalte lässt sich teilweise auf die geringe Ergebnisspannweite bei den SMA mit Basaltbrechsanden zurückführen.

Der minimale fiktive Hohlraumgehalt wird mit Brechsanden, die unter Verwendung des Vertikalprallbrechers hergestellt wurden, mit weniger Bindemittel erreicht als bei Verwendung der Sande aus der Kegelbrecherherstellung.

Asphaltbetone mit Grauwackebrechsanden konnten höher verdichtet werden als solche mit Basaltbrechsanden. Begünstigt wurde die hohe Verdichtung der Asphalte mit Grauwackebrechsand durch die relativ große Menge anhaftender Tonminerale an der Oberfläche dieser Brechsande.

Die ermittelten Verdichtungswiderstände (Tabellen 7-9 und 7-10) liegen gemäß dem Merkblatt für das Verdichten von Asphalt [29] im unteren Teil der Variationsbereiche. Die Asphalte ließen sich somit vergleichsweise leicht verdichten. Die Asphaltbetone mit Basaltbrechsand ließen sich geringfügig leichter verdichten als die mit Grauwackebrechsand. Gemäß dem genannten Merkblatt beträgt die Wiederholgrenze für zwei ermittelte Ergebnisse 11 %, sodass die ermittelten Werte für die Asphaltbetone mit Basaltbrechsand nur eine eingeschränkte Aussagefähigkeit besitzen, da hier die Gesamtspannweite der Ergebnisse ebenso nur ca. 10 % (bei 21 Nm) beträgt. Die Spannweite der Ergebnisse beim Splittmastixasphalt unterscheidet sich ebenfalls nicht wesentlich von der Wiederholgrenze dieser Prüfung. Jedoch lässt die gute Korrelation der Ergebnisse (Tabelle A5-4 im Anhang 5) mit der Sphärizität F_{S,Ä,1} der verwendeten Brechsande (r=0,964) darauf schließen, dass hier ein Einfluss der Brechsandeigenschaften und somit der Aufbereitungsart gegeben ist. Die maximale Korrelation zwischen dem Verdichtungswiderstand der Asphaltbetone und den Brechsandeigenschaften wurde mit der Regressionsvariablen F_{S.F.2} mit r=0,827 gefunden. Der niedrigere Korrelationskoeffizient ergibt sich aus den schlecht korrelierenden Ergebnissen der Asphalte mit Basaltbrechsand (Abbildungen 9-7 und 9-8). Die Ergebnisse der Untersuchungen im einaxialen Druckschwellversuch zeigen deutliche Abhängigkeiten zur Aufbereitungsart nur bei der Verformung  $\varepsilon_{10}$ . Die Variation

liche Abhängigkeiten zur Aufbereitungsart nur bei der Verformung  $\varepsilon_{10}$ . Die Variation des Kaskadenstroms wirkt sich gegensätzlich auf den Einfluss der Gesteinsart aus **(Abbildung 7-5)**. Eine statistisch gesicherte Aussage zur Präzision der Untersu-

chungsergebnisse ist nicht möglich. Eine entsprechende Forschungsarbeit ist an der Universität Karlsruhe zur Zeit in Arbeit.

Die multiple lineare Regressionsrechnung ergab einen maximalen Einfluss der Konkavität ( $\delta$ =d_Å, r=0,992) auf die Verformung  $\varepsilon_{10}$ . Aber auch die Kubizität ( $\delta$ =d_F, r=0,976) korreliert diesbezüglich auffällig gut (**Tabelle A5-1** im **Anhang 5**). Der Feinheitsparameter RRSBn_Å spielt ebenfalls eine geringe Rolle (**Tabelle A5-2** im **Anhang 5**). Im Gegensatz zu den Verdichtungseigenschaften (fiktiver Hohlraumgehalt und Verdichtungswiderstand) scheint hier die Gedrungenheit der Brechsandkörner eine größere Rolle zu spielen, als die durch die Sphärizität auch berücksichtigte Form der Kornoberfläche. Der unterschiedliche Einfluss der Kornformparameter wurde durch die Ergebnisse einer partiellen Korrelationsanalyse bestätigt (**Tabellen A5-5** bis **A5-8** im **Anhang 5**).

#### IIII Annang 5). Dar Spaltzugfaatie

Der Spaltzugfestigkeitsabfall nach Wasserlagerung wird bei allen untersuchten Asphalten offenbar von der Aufbereitungsart der Brechsande beeinflusst (Abbildungen 7-9 und 7-10). Der Einfluss der Gesteinsart ist bei den Asphaltbetonen deutlich höher als bei den Splittmastixasphalten (Tabelle 7-14). Die Festigkeitseinbußen sind dabei bei Asphalten mit herkömmlich hergestellten Brechsanden mehr als zweimal so hoch als bei den Asphalten mit anderen Brechsanden.

Statistisch gesicherte Aussagen zur Präzision des Prüfverfahrens können hier ebenfalls nicht gemacht werden. Die große Spannweite der Ergebnisse legt aber die Vermutung nahe, dass die Spaltzugfestigkeit nach Wasserlagerung von den Brechsandeigenschaften abhängt.

Die ermittelten Stabilitäten (Abbildung 7-11) und Fließwerte (Abbildung 7-12) ergaben - nicht unerwartet - keinen erkennbaren Zusammenhang zur Aufbereitungsart. Die Ergebnisspannweite der Stabilitäten liegt bei rd. 30 %, die der Fließwerte noch darunter. Die Wiederholgrenze liegt gemäß DIN 1996-11 [31] bei 22 %. Die Aussagefähigkeit der Untersuchungsergebnisse ist somit sehr eingeschränkt.

Die Ermittlung einer Funktionalität zwischen den Brechsandeigenschaften und den Fließwerten war rechnerisch nicht möglich, da die Korrelationen zu schwach ausgeprägt waren.

Die multiple lineare Regressionsrechnung ergab zwischen den Stabilitäten der Asphaltbetone und den Regressionsvariablen  $F_{Kon,F,1}$  und  $F_{Kub,F,1}$  einen Korrelationskoeffizienten von r=0,896. Diese scheinbare Korrelation muss jedoch relativiert werden, da die Regressionsvariablen relativ hohe Fehlersignifikanzen besitzen **(Tabellen A5-1** und **A5-2** im **Anhang 5)**.

#### 10.3 Natursand, Kalkstein- und Basaltbrechsande zur Verwendung in Beton

Die Fließzahlen der untersuchten Brechsande können wie die der Brechsande zur Verwendung in Asphalt beurteilt werden. Die Fließzahl des Natursandes lag erwar-

tungsgemäß deutlich niedriger. Der Abrieb des Kalksteinbrechsandes in der Kugelmühle wurde offensichtlich nicht von der Art der Aufbereitung beeinflusst **(Abbildung 6-24)**. Geringe Siebweiten des Trennschnitts wirkten sich dagegen mindernd auf den Abrieb der Basaltbrechsande aus. Die nur mit Kegelbrechern aufbereiteten Basaltbrechsande wiesen wesentlich höhere Abriebwerte auf als diejenigen, die mit dem Vertikalprallbrecher aufbereitet wurden.

Auch hier entsprachen die Brechsande im Anlieferungszustand nicht den Anforderungen an Edelbrechsande gemäß TL Min-StB [2], da die Überkornanteile bei fast allen Sanden zu hoch waren (**Tabelle 6-12**).

Alle Kalksteinbrechsande, die mit dem Vertikalprallbrecher hergestellt wurden, weisen eine ähnliche mechanisch ermittelte Korngrößenverteilung auf **(Abbildung 6-25)**. Die Verteilung des konventionell hergestellten Kalksteinbrechsandes K02 weicht davon deutlich ab. Die Ungleichförmigkeitszahl ist mehr als doppelt so groß wie die der anderen Kalksteinbrechsande. Die Korngrößenverteilungen der Basaltbrechsande können als einander ähnlich betrachtet werden.

Photooptisch analysiert unterscheiden sich die Feinheitsmerkmale der Sande stärker als mechanisch analysiert. Die Merkmale des K02K unterscheiden sich in verschiedener Art und Weise analysiert besonders voneinander, da die photooptisch ermittelte Verteilung wesentlich enger gestuft (D25/D75_Å=0,53) ist als die mechanisch ermittelte (D25/D75=0,18).

Eine gute Approximation an die photooptisch ermittelten Verteilungen gelang durch die RRSB-Verteilung **(Tabellen 6-15** und **6-16; Abbildung 6-30).** Ein Einfluss der Aufbereitungsart auf die Feinheitsmerkmale der untersuchten Brechsande ist nicht offensichtlich.

Die Ergebnisse der photooptischen Kornformanalyse deuten darauf hin, dass sich die Art der Aufbereitung auf die Kornform des hergestellten Basaltbrechsandes auswirkt. Kleinere Trennschnitte in der vierten Basalt-Brechstufe sowie eine Materialaufgabe ohne Kaskadenstrom führten meist zu relativ großen (ungünstigen) Kornformparametern. Dies gilt hauptsächlich für das Grobkorn der Sande, wenn der Feret-Durchmesser als Korngrößendefinition zugrundegelegt wurde. Kornformanalysen auf der Grundlage des Äquivalentdurchmessers als Korngrößendefinition zeigten ebenfalls Abhängigkeiten von der Art der Aufbereitung, wenn auch weniger deutlich (Abbildungen 6-34 bis 6-39).

Auch hier wurde festgestellt, dass je feiner die Korngrößen desto geringer die Abhängigkeit der ermittelten Kornformparameter von der Aufbereitungsart ist. Die Art der Aufbereitung beeinflusst wahrscheinlich die Kornformen der verschiedenen Kornklassen unterschiedlich. Den ausschließlich mit Kegelbrechern hergestellten Brechsanden können im Feinbereich nahezu gleich große oder sogar niedrigere Kornformparameter zugeordnet werden als den anderen mit Vertikalprallbrecher hergestellten Sanden.

Die Ergebnisse der Kornformanalysen der Kalksteinbrechsande unterscheiden sich in einigen Punkten von denen der Basaltbrechsande. Der Einfluss der Aufbereitungsart auf die verschiedenen Kornklassen ist hier unterschiedlicher. Wirkt sich ein gewählter größerer Trennschnitt auf das Grobkorn vergrößernd auf den Kornformparameter aus, so ist dies im Feinkornbereich genau umgekehrt. Auch ist der Einfluss der Aufbereitungsart auf die Sphärizitäten im Vergleich zu den Basaltbrechsanden relativ gering.

Für den untersuchten Natursand wurden die kleinsten Kornformparameter ermittelt. Der Natursand kann damit, wie zu vermuten, als gedrungener und glatter als die Brechsande beschrieben werden.

Die Ermittlung der Kornanzahlverteilungen der Brechsande ergab keine offensichtliche Abhängigkeit zur Aufbereitungsart.

#### 10.4 Auswirkungen der Sande in Beton

Ein numerischer Zusammenhang zwischen den Brechsand- und Betoneigenschaften war nicht abzuleiten. Dies liegt einerseits daran, dass aus Gründen der Systematik eine weitgehend einheitliche Korngrößenverteilung für das Zuschlaggemisch eingehalten werden sollte. Das bedingte in Verbindung mit den teils hohen Überkornanteilen jeweils unterschiedlich hohe Sandzugaben, während die Feinkornanteile < 0,063 mm konstant gehalten wurden. Zum anderen wurden, wie vorgesehen, lediglich die Sandkörnungen 0,09 bis 2,0 mm einer photooptischen Analyse unterzogen. Die Bewertung der Ergebnisse der Betonuntersuchungen kann daher nur quantitativ in Verbindung mit den Sandeigenschaften erfolgen.

Der Beton mit Natursand hat erwartungsgemäß das geringste Verdichtungsmaß. Mit einem Wert von 1,09 hat dieser Beton die günstigste Konsistenz im Vergleich zu allen untersuchten Brechsanden, siehe **Abbildung 10-1**. Die Anwendung des Vertikalprallbrechers führt nicht bei allen Varianten zu einer günstigeren Verarbeitbarkeit der Betone im Vergleich zur klassischen Brechsandherstellung. Sowohl beim Basalt- als auch beim Kalksteinbrechsand hat sich die Variante 08oK (Trennschnitt 8 mm, kein Kaskadenstrom) als zweckmäßig erwiesen. Bei den übrigen Varianten muss jeweils Kalkstein bzw. Basalt getrennt betrachtet werden. Werden die Feinstanteile (< 63 µm) nicht abgetrennt, führt dies zu steiferen Betonen als bei den Brechsanden mit den verringerten Feinstkorngehalten, wie die Ergebnisse unter Verwendung von K08K bzw. B08K zeigen. Die Gehalte an Luftporen im Frischbeton bewegen sich zwar in üblicher Größenordnung, aber es wird auch deutlich, dass die steiferen Betone die höchsten LP-Gehalte aufweisen, wie in **Abbildung 10-2** gezeigt.

Bei der Verarbeitung der Betone mit Brechsand war aber auffällig, dass sie ein ausgeprägt thixotropes Verhalten zeigten, so dass sie sich trotz ihrer sehr steifen Konsistenz im Ruhezustand beim Eintrag von Verdichtungsenergie gut verdichten ließen.

Mit den höheren Zementgehalten und dem damit verbundenen höheren Zementleimgehalt beim B55 liegt der Beton mit dem Brechsand K02oK um eine Konsistenzklasse steifer als der Beton mit Natursand. Die beiden Betone mit Basaltbrechsand sind in ihrem Verarbeitungsverhalten geringfügig günstiger als der Beton mit Natursand.



* Verwendung des Brechsands im Originalzustand, d.h. mit vollem Anteil an Mehlkorn

Abbildung 10-1: Verdichtungsmaß der Betone B25



Abbildung 10-2: Zusammenhang zwischen Verdichtungsmaß und Luftporengehalt im Frischbeton B25

Die Frühfestigkeiten (2 d) der Betone mit den Kalksteinbrechsanden sind höher als bei dem Vergleichsbeton mit Ausnahme des Brechsands K02 aus konventioneller Herstellung, aber auch höher als bei den Betonen mit Brechsanden aus Basalt. Unter Berücksichtigung einer Standardabweichung von etwa 1,4 sind Unterschiede bis etwa 3 MPa aber nicht signifikant.

Eine Systematik für einen Zusammenhang zwischen der Art der Aufbreitung der Brechsande und der Festigkeit der damit hergestellten Betone ist nicht erkennbar.

Die nach zwei Tagen noch vorhandenen Unterschiede zwischen den einzelnen Betonen können auf eine unterschiedliche Stützwirkung des Korngerüstes mit zurückgeführt werden. Mit zunehmender Festigkeit der Zementsteinmatrix werden die Einflüsse des Korngerüsts geringer und somit auch die relativen Unterschiede in den Festigkeiten der einzelnen Betone.

Die Spaltzugfestigkeiten liegen für übliche Betone zwischen 2 und 6 MPa, die von Splittbetonen im allgemeinen 10 bis 20 % über denen von Kiesbetonen. Die Werte der untersuchten Betone B25 betragen nach 28 Tagen 4,4 MPa für den Beton mit Natursand und Basaltsplitt und 3,5 bis 5,2 MPa für die Betone mit Brechsand und Basaltsplitt. Sie schwanken also um den Wert für den Beton mit Natursand. Dies ändert sich auch nach 90 Tagen Lagerung nicht. Wie bei den Druckfestigkeiten ist keine Abhängigkeit zur Art der Aufbereitung zu erkennen.

Der dynamische E-Modul hängt maßgeblich von drei Einflussgrößen ab und zwar vom E-Modul des Zementsteins, vom E-Modul der Zuschläge und vom Feuchtegehalt. Der E-Modul des Zementsteins wird in hohem Maß vom w/z-Wert bestimmt. Bei einem w/z-Wert von 0,7 beträgt der E-Modul des Zementsteins nach 28 Tagen etwa 9000 MPa, bei einem w/z-Wert von 0,4 hingegen etwa 20000 MPa. Wassergesättigter Zementstein hat einen um etwa 10 % höheren E-Modul als trockener Zementstein. Wesentlich größer sind die Einflüsse durch den Zuschlag. Der E-Modul von Normalzuschlag liegt etwa zwischen 10000 MPa (Sandstein) und reicht bis etwa 90000 MPa (Basalt).

Mit zunehmender Druckfestigkeit nimmt der E-Modul zu. Aufgrund des starken Einflusses durch den Zuschlag nimmt der E-Modul prozentual mit steigender Druckfestigkeit aber nicht in gleichem Umfang zu. Beim Vergleich der Messwerte ist zu berücksichtigen, dass der erste Messwert nach 7 Tagen aufgrund der Nachbehandlung (1 Tag in der Schalung, 6 Tage unter Wasser) an den wassergesättigten Probekörpern erfolgte, während die späteren Messungen an Probekörpern erfolgten, die anschließend im Klimaraum lagerten. Dadurch erklärt sich, dass zwischen den Werten nach 7 und 14 Tagen trotz deutlicher Festigkeitszunahmen die Werte für den dynamischen E-Modul im allgemeinen nur geringfügig zunehmen.

Die Carbonatisierungstiefe der Probekörper zeigt keinerlei Abhängigkeiten zur Art der Brechsandaufbereitung.

Die Wassereindringtiefe darf 50 mm nicht übersteigen. Diese Forderung wird von allen Betonen zielsicher erfüllt.

#### 11 Schlussfolgerungen und Ausblick

Die Untersuchungsergebnisse zeigten, dass die Kornform der verwendeten Brechsande einen größeren Einfluss auf die Asphalteigenschaften hat als deren Korngrößenverteilung. Die maximalen Korrelationen zu den Asphalteigenschaften werden mit einer Ausnahme ( $\epsilon_{10}$  bei Asphaltbeton) ausschließlich durch Kornformparameter erreicht. Außerdem wird nur in einem Fall (Spaltzugfestigkeitsabfall bei Splittmastixasphalt) eine maximale Korrelation durch einen mechanischen Brechsandparameter erzielt.

Neben den genannten statistischen Beurteilungskriterien sind die Konfidenzintervalle der betrachteten Regressionsparameter und die standardisierten Regressionskoeffizienten zu berücksichtigen. Die relativ großen Konfidenzintervalle verhinderten eine Formulierung des Einflusses der Brechsandeigenschaften in einer konkreten Funktionsform. Die Ergebnisse der multiplen linearen Regressionsrechnung lieferten vielmehr die Möglichkeit, den Einfluss der betrachteten Parameter auf die Asphalteigenschaften numerisch abzuschätzen.

Die Untersuchungen zeigten, dass die granulometrischen Bewertungskriterien, wie sie in den TL Min-StB [2] für Edelbrechsande 0/2 (F) vorgesehen sind, sinnvoll erweitert werden können. Sie enthalten zur Beurteilung der Granulometrie von Sanden ausschließlich Anforderungen an die Über- und Unterkornanteile. Spezifische Anforderungen an Kornklassen (hier: 0,09/2 mm) werden nicht gestellt. Die beschriebenen Untersuchungen haben aber gezeigt, dass die granulometrischen Eigenschaften der Kornklassen und dabei insbesondere die photooptisch ermittelten Kornformparameter die Asphalteigenschaften beeinflussen.

Die Projektionsflächen von gebrochenen Gesteinskörnern bilden komplexe unregelmäßige Formen, deren Beschreibung durch eine Parameterschreibweise im sinnvollen Umfang noch nicht möglich ist. Zum Vergleich können einfache geometrische Formen wie Kreise oder Vierecke durch die Angabe von Radien oder Winkeln relativ einfach durch wenige Parameter eindeutig bestimmt werden.

Mit den verwendeten Kornformparametern ist es dagegen nicht möglich, die untersuchten Brechsande eindeutig und absolut zu beschreiben, da verschiedene Oberflächenmerkmale, wie z.B. Makrogestalt oder Kantigkeit in nicht nachvollziehbaren Relationen den Wert des Kornformparameters beeinflussen.

Die Untersuchungen haben jedoch gezeigt, dass es möglich ist, Brechsande aus derselben Provenienz durch die verwendeten Kornformparameter sinnvoll zu unterscheiden, um dadurch die Konsequenzen für die Asphalteigenschaften beschreiben zu können.

Die aufbereitungstechnisch bewirkte Spannweite der Brechsandeigenschaften hat gezeigt, dass es möglich ist, mit dem verwendeten Vertikalprallbrecher gezielt Brech-

sandeigenschaften zu erzwingen, die sich in Verbesserungen der Asphalteigenschaften umsetzen lassen.

Die konsequente Fortsetzung der Untersuchungen hätte das Ziel, die Beschreibung der Gesteinskörner und den Einfluss auf die Asphalteigenschaften weiter zu differenzieren. Dabei wären Methoden zu finden, die eine möglichst präzise Identifizierung einer Gesteinsform durch die Angabe von wenigen Parametern ermöglichen, deren Einfluss auf Asphalteigenschaften quantifiziert werden könnten. Diese Erkenntnisse wären im nächsten Schritt aufbereitungstechnisch umzusetzen.

Bezüglich der Auswirkungen optimierter Brechsande in Beton muss festgestellt werden, dass der erhöhte Feinkorngehalt bei der Aufbereitung der Brechsande im Vertikalbrecher von Nachteil ist. Hier müsste noch nach Wegen gesucht werden, wie dies vermieden werden kann, da eine nachträgliche Abtrennung der Feinanteile vermutlich zu kostenaufwendig sein wird. Sicherlich steckt in der Trennschnitttechnik, die hierfür verantwortlich war, noch ein Verbesserungspotenzial.

Unabhängig davon hat sich gezeigt, dass vergleichbare Eigenschaften mit den optimierten Brechsanden bzw. mit Natursand erzielt werden können bei gleichem Zementgehalt.

#### 12 Zusammenfassung

Zur Zeit werden im Betonbereich von der Naturstein-Industrie ca. 30 Mio. t Betonzuschlag eingesetzt, allerdings fast ausnahmslos nicht im Sandbereich, der in einer üblichen Betonzusammensetzung im Mittel 30 bis 40 % ausmacht. Zur Herstellung von Asphalt werden pro Jahr über 20 Mio t Sande benötigt. Der Anteil der Brechsande liegt z. Zt. bei etwa 50 %. Er ließe sich – geeignete Qualität vorausgesetzt – deutlich steigern.

Auf Grundlage dieser Überlegungen wurden durch verschiedene Aufbereitungsmechanismen mit einem Vertikalprallbrecher aus drei Gesteinsprovenienzen (Grauwacke, Basalt und Kalkstein) jeweils fünf granulometrisch unterscheidbare Brechsande hergestellt und gekennzeichnet. Anschließend wurden die Einflüsse der Differenzen der Brechsandgranulometrien auf die Eigenschaften der damit hergestellten Asphalte und Betone analysiert. Neben mechanischen Sandprüfungen wurden photooptische Untersuchungen zur Kennzeichnung der Sande herangezogen, wobei die statistischen Längen von Partikelprojektionsflächen bestimmt wurden. Neben der Ermittlung der volumetrischen Korngrößenverteilungen wurden durch Kombination dieser Längen Partikelformparameter (= Kornformparameter) definiert, um damit verschiedene Formeigenschaften der Brechsande beschreiben zu können. Mit den verwendeten Kornformparametern sollten Formeigenschaften wie Kreisförmigkeit und Gedrungenheit beschrieben werden.

Die photooptische Untersuchungsmethode lieferte deutlich bessere Ergebnisse zur Prognostizierung der Asphalteigenschaften als die mechanischen Eigenschaften der Brechsande. Die Untersuchungsergebnisse zeigen, dass eine Variation der Kornform der Brechsande einen größeren Einfluss auf die Asphalteigenschaften ausübt als die Variation der Korngrößenverteilung. Die maximalen Korrelationen zu den Asphalteigenschaften werden mit einer Ausnahme ausschließlich durch Kornformparameter erreicht.

Die Untersuchungen ergaben, dass verschiedene Asphalteigenschaften von unterschiedlichen Kornformparametern primär beeinflusst werden. So ist es möglich, Brechsande aus derselben Provenienz durch die photooptisch ermittelten Kornformparameter sinnvoll zu unterscheiden, um dadurch die Auswirkungen auf Asphalteigenschaften beschreiben zu können.

Im Unterschied zu den im Asphalt verwendeten Brechsanden wurden die Sande für die Betonherstellung mit dem produktionsbedingten Überkornanteil und in jeweils verschiedenen Anteilen den Betonrezepturen zugegeben, um dabei eine möglichst ähnliche Korngrößenverteilung wie bei der Standardrezeptur mit Natursand zu erreichen. Eine statistische Auswertung des Zusammenhangs zwischen Sand- und Betoneigenschaften war daher nicht möglich. Der Beton mit Natursand hat erwartungsgemäß das geringste Verdichtungsmaß und damit die günstigste Konsistenz im Vergleich zu allen untersuchten Brechsanden. Bei der Verarbeitung der Betone mit Brechsand war auffällig, dass sie ein ausgeprägt thixotropes Verhalten zeigten, so dass sie sich trotz ihrer sehr steifen Konsistenz im Ruhezustand gut verdichten ließen. Die ermittelten Festigkeiten der Betone, die mit Brechsand hergestellt wurden, sind tendenziell höher als die der Betone mit Standardrezeptur. Eine Abhängigkeit der Art der Aufbereitung der Sande von den Frisch- und Festbetoneigenschaften konnte jedoch statistisch nicht nachgewiesen werden.

Die Erkenntnisse dieser Untersuchungen können bei der Herstellung von Brechsanden für Asphalte dazu verwendet werden, gezielt solche Kornformen für Brechsande herzustellen, die die Asphalteigenschaften insbesondere bezüglich des Verformungswiderstandes positiv beeinflussen. Für den Einsatz in Beton sind die Ergebnisse noch nicht so eindeutig. Insgesamt wird durch die Untersuchungen ein Weg aufgezeigt, wie die Qualität von Brechsanden gesteigert und damit auch die Wettbewerbssituation der Steinbruchbetreiber verbessert werden kann.

#### 13 Literatur

- [1] DIN 4226-1 "Gesteinskörnungen für Beton und Mörtel" Teil 1: Normale und schwere Gesteinskörnungen; Ausgabe Juli 2001
- Technische Lieferbedingungen f
  ür Mineralstoffe im Stra
  ßenbau TL Min-StB 2000; Ausgabe 2000; FGSV
- [3] Krass, K. u.a.: Beurteilung der versteifenden Wirkung von Sanden im Asphalt anhand der Fließzahl; Forschungsbericht FE-Nr. 07.132G87E des Bundesministers für Verkehr; Bochum im April 1990
- [4] Feix, R.: Brech- und Natursandeigenschaften und deren Bedeutung für die Asphalt- und Betontechnologie; Manuskript eines Vortrages anläßlich der Jahrestagung der bayerischen Sand- und Kiesindustrie; München 1986
- [5] Schicht, E.: Der Einsatz der BHS-Schleudermühle zur Erzeugung kubischen Endkorns; Aufbereitungs-Technik 38 (1997) Nr.: 1
- [6] Baumaschinen Taschenbuch; Bauverlag GmbH Wiesbaden und Berlin; 1984
- [7] Schicht, E.: Eigenschaften und Einsatzgebiete von Rotormühlen; Aufbereitungs-Technik 39 (1998) Nr.: 10
- [8] Hudson, B.: Flour Power; Quarry, 10/1996
- [9] Schicht, E.: Rotormühlen. Eine Maschinengruppe f
  ür viele Einsatzf
  älle; Die Naturstein-Industrie 9/1997
- [10] Vertikal-Prallbrecher setzt neue Maßstäbe; Die Naturstein-Industrie 6/1999
- [11] Zusätzliche Technische Vertragsbedingungen und Richtlinien für den Bau von Fahrbahndecken aus Asphalt – ZTV Asphalt-StB 01, Ausgabe 2001, FGSV
- [12] Merkblatt für Eignungsprüfungen an Asphalt; Ausgabe 1998; FGSV
- [13] DIN 52102 "Prüfungen von Naturstein und Gesteinskörnungen" Bestimmung von Dichte, Trockendichte, Dichtigkeitsgrad und Gesamtporosität, Ausgabe August 1988
- [14] Hutschenreuther, Wörner: Asphalt im Straßenbau; Verlag für Bauwesen; 1998
- [15] DIN 1045 "Beton und Stahlbeton" Bemessung und Ausführung; Ausgabe Juli 1988
- [16] DIN EN 197-1 "Zement" Teil 1: Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement; Ausgabe Februar 2001
- [17] Technische Pr
  üfvorschriften f
  ür Mineralstoffe im Stra
  ßenbau TP Min-StB Teil 3.7.2: Flie
  ßversuch an Sand; Ausgabe 1986; FGSV
- [18] Technische Prüfvorschriften für Mineralstoffe im Straßenbau TP Min-StB Teil 5.4.2: Prallprüfung an Sand in der Kugelmühle; Ausgabe 1982, FGSV
- [19] Technische Pr
  üfvorschriften f
  ür Mineralstoffe im Stra
  ßenbau TP Min-StB Teil 6.3.2: Korngr
  ö
  ßenverteilung von Sand (Luftstrahlsiebung); Ausgabe 1982, FGSV
- [20] Dowdeswell, J. A.: Scanning electron micrographs of quartz sand grains from cold environments examined using Fourier Shape Analysis. In: Journal of Sedimentary Petrology 52 (1982) Nr. 4

- [21] Hodenberg, M. v.: Optimierung der Kies- und Sandgewinnung auf einem Baggerschiff durch vollautomatische Online-Korngrößenanalyse. In: Aufbereitungstechnik 41 (2000) Heft 12
- [22] Pahl, M.H. u.a.: Zusammenstellung von Teilchenformbeschreibungsmethoden. In: Aufb.-Techn. 14 (1973) Nr.10
- [23] Folgner, T., Unland, G.: Automatische Kornformbestimmung durch photooptische Partikelanalyse; Die Natursteinindustrie (1997) Heft 5
- [24] Church, T.: Problems Associated with the use of the ratio of Martin's Diameter to Feret's Diameter as a profile shape factor; Powder Technology 2 (1968/69)
- [25] Abrams, D.: Design of concrete mixtures. In: Newlon, H. (Hrsg.): A selection of historic american papers on concrete 1876-1926. Detroit 1976
- [26] DIN 1996-4 "Prüfung bituminöser Massen für den Strassenbau und verwandte Gebiete" Teil 4: Herstellung von Probekörpern aus Mischgut, Ausgabe November 1984
- [27] Technische Pr
  üfvorschriften f
  ür Asphalt im Stra
  ßenbau -TP A-StB, Teil: Einaxialer Druckschwellversuch - Bestimmung des Verformungsverhaltens von Asphalten bei W
  ärme; Ausgabe 1999, FGSV
- [28] Arbeitsanleitung für die Bestimmung der Verdichtbarkeit von Walzasphalt mit Hilfe des Marshall-Verfahrens; Ausgabe 1987, FGSV
- [29] Merkblatt f
  ür das Verdichten von Asphalt Teil 2: Theorie der Verdichtung; Ausgabe 1993, FGSV
- [30] Schlussbericht des Instituts f
  ür Stra
  ßenwesen der Technischen Universit
  ät Braunschweig zum FA Nr. 7.133 G 87 E des BMV; Anhang III: Arbeitsanleitung f
  ür die Ansprache des Haftverhaltens zwischen Bindemittel und Mineralstoffen in einem verdichteten Asphalt; Februar 1991
- [31] DIN 1996-11 "Prüfung bituminöser Massen für den Straßenbau und verwandte Gebiete" Teil 11: Bestimmung von Marshall-Stabilität und Marshall-Fließwert; Ausgabe Juli 1991
- [32] DIN 1996-7 "Prüfung bituminöser Massen für den Straßenbau und verwandte Gebiete" Teil 7: Bestimmung von Dichte und Hohlraum; Ausgabe Dezember 1992
- [33] DIN 1048-1 "Prüfverfahren für Beton" Teil 1: Frischbeton; Ausgabe Juni 1991
- [34] DIN 1048-5: "Prüfverfahren für Beton" Teil 5: Festbeton, gesondert hergestellte Probekörper; Ausgabe 1991
- [35] Bunke, N.: Prüfung von Beton. Empfehlungen und Hinweise als Ergänzung zu DIN 1048; DAfStb Heft 422 (1991)
- [36] Grindo-Sonic Typ MK 42. Firmenschrift und Bedienungsanleitung J.W. Lemmens GmbH (1986).
- [37] Sachs, Lothar: Angewandte Statistik; 7. Auflage; Springer-Verlag 1992
- [38] SPSS for Windows; Release 10.07; SPSS Inc.; 2000
- [39] Backhaus, K.: Multivariate Analysemethoden; 5. Auflage; Springer-Verlag 1989
- [40] Merkblatt über die statistische Auswertung von Prüfergebnissen Teil 1: Grundlagen zur Präzision von Prüfverfahren; Ausgabe 2000, FGSV

[41] Merkblatt für das Verdichten von Asphalt; Teil 2: Theorie der Verdichtung; Ausgabe 1993, FGSV

### 14 Verzeichnisse

#### 14.1 Tabellenverzeichnis

Tabelle 3-1:	Leistung der Brechsandaufbereitung mit Vertikalprallbrecher und	-
	Stromaufnahme	6
Tabelle 3-2:	Letzte Brechstute zur Herstellung der Brechsande	8
Tabelle 3-3:	Eigenschaften des verwendeten Kalksteinmehls	9
Tabelle 3-4:	Rohdichten der im Asphalt verwendeten Baustoffe	9
Tabelle 3-5:	Volumetrisch berechnete Anteile in den Mineralstoffgemischen	
	für die beiden Asphalte	.10
Tabelle 3-6:	Gravimetrische Zugabeanteile in den Mineralstoffgemischen	
	für die beiden Asphalte	.10
Tabelle 3-7:	Gravimetrische Bindemittelgehalte der Asphalte	.10
Tabelle 3-8:	Eigenschaften des verwendeten Mehlkorns	.12
Tabelle 3-9:	Allgemeine Randbedingungen für die Herstellung der Betone	.13
Tabelle 3-10:	Betonrezepturen für die Vergleichsbetone B25 und B55	.14
Tabelle 3-11:	Betonrezepturen für B25	.15
Tabelle 3-12:	Zusätzliche Betonrezepturen für B25	.16
Tabelle 3-13:	Betonrezepturen für B55	.16
Tabelle 4-1:	Berücksichtigte Partikelgrößenklassen der Sphärizitäten	.22
Tabelle 4-2:	Berücksichtigte Partikelgrößenklassen der Kubizitäten	.23
Tabelle 4-3:	Berücksichtigte Partikelgrößenklassen der Konkavitäten	.23
Tabelle 4-4:	Kontrolllängen zur Bestimmung der volumetrischen	
	Korngrößenverteilung	.24
Tabelle 6-1:	Korngrößenverteilung der Brechsande aus Grauwacke und Basalt	
	vor Absiebung von Uber- und Unterkorn	.29
Tabelle 6-2:	Korngrößenverteilung der Brechsande nach Absiebung von	
	Uber- und Unterkorn	.30
Tabelle 6-3:	Volumetrische Korngrößenverteilung der Brechsande aus	
	Grauwacke und Basalt ( $\delta = d_F$ )	.31
Tabelle 6-4:	Volumetrische Korngrößenverteilung der Brechsande aus	
	Grauwacke und Basalt (δ= d _Ä )	.33
Tabelle 6-5:	Bivariate Bestimmtheitsmaße für den Zusammenhang zwischen	
	den theoretischen und den festgestellten Verteilungen der	
	Brechsande aus Grauwacke und Basalt ( $\delta = d_F$ )	.35
Tabelle 6-6:	Bivariate Bestimmtheitsmaße für den Zusammenhang zwischen	
	den theoretischen und den festgestellten Verteilungen der	
	Brechsande aus Grauwacke und Basalt ( $\delta = d_{A}$ )	.36
Tabelle 6-7:	Kornanzahlverteilung der Brechsande aus Grauwacke und	
	Basalt ( $\delta = d_F$ )	.39
Tabelle 6-8:	Kornanzahlverteilung der Brechsande aus Grauwacke und	
	Basalt ( $\delta = d_{\bar{a}}$ )	.40
Tabelle 6-9 [.]	Mittelwerte der zusammengefassten Parameter Fesse für	
	Grauwacke- und Basaltbrechsand	44
Tabelle 6-10 [.]	Mittelwerte der zusammengefassten Parameter Freihen für	
	Grauwacke- und Basaltbrechsande	46
Tabelle 6-11.	Mittelwerte der zusammengefassten Parameter Figure für	0
	Grauwacke- und Basaltbrechsand	47

Tabelle 6-12:	Korngrößenverteilung des Natursandes sowie der Kalkstein-	-0
	Und Basaltorechsande.	50
Tabelle 6-13:	volumetrische Korngroßenverteilung des Natursandes sowie	50
Toballa 6 14	uel Kalkstein- unu Basallorechsande ( $o = o_F$ )	53
Tabelle 0-14.	den Kellistein und Deselterschennde (S. e.d.)	- 4
<b>T</b> I II 0 45	der Kalkstein- und Basaltbrechsande ( $\delta = d_{A}$ )	54
Tabelle 6-15:	Bivariate Bestimmtheitsmalse für die Approximation ( $\delta = d_F$ )	
	bei Natursand sowie bei den Kalkstein- und Basaltbrechsanden	56
Tabelle 6-16:	Bivariate Bestimmtheitsmaße für die Approximation ( $\delta = d_{A}$ )	
	bei Natursand sowie bei den Kalkstein- und Basaltbrechsanden	56
Tabelle 6-17:	Kornanzahlverteilung ( $\delta$ = d _F ) des Natursandes sowie der	
	Kalkstein- und Basaltbrechsande	58
Tabelle 6-18:	Kornanzahlverteilung ( $\delta = d_{A}$ ) des Natursandes sowie der Kalkste	ein-
	und Basaltbrechsande	59
Tabelle 6-19:	Sphärizitäten F _{S,F} des Natursandes sowie der Kalkstein- und	
	Basaltbrechsande	61
Tabelle 6-20:	Sphärizitäten F _{S,Ä} des Natursandes sowie der Kalkstein- und	
	Basaltbrechsande	61
Tabelle 6-21:	Kubizitäten F _{Kub,F} des Natursandes sowie der Kalkstein- und	
	Basaltbrechsand	63
Tabelle 6-22:	Kubizitäten F _{Kub,Ä} des Natursandes sowie der Kalkstein- und	
	Basaltbrechsande	63
Tabelle 6-23:	Konkavitäten F _{Kon,F} des Natursandes sowie der Kalkstein- und	
	Basaltbrechsande	65
Tabelle 6-24:	Konkavitäten F _{Kon,Ä} des Natursandes sowie der Kalkstein- und	
	Basaltbrechsande	65
Tabelle 7-1:	Hohlraumgehalte der Asphaltbetone	67
Tabelle 7-2:	Hohlraumgehalte der Splittmastixasphalte	67
Tabelle 7-3:	Fiktive Hohlraumgehalte der Asphaltbetone	69
Tabelle 7-4:	Fiktive Hohlraumgehalte der Splittmastixasphalte	69
Tabelle 7-5:	Einfaktorielle Varianzanalyse der fiktiven Hohlraumgehalte der	
	Asphalte; Faktor: Gesteinsart	71
Tabelle 7-6:	Verformungseigenschaften der Asphaltbetone im einaxialen	
	Druckschwellversuch	71
Tabelle 7-7:	Verformungseigenschaften der Splittmastixasphalte im einaxialen	
	Druckschwellversuch	72
Tabelle 7-8:	Einfaktorielle Varianzanalyse der Verformungseigenschaften der	
	Asphalte im einaxialen Druckschwellversuch; Faktor: Gesteinsart	73
Tabelle 7-9:	D-Wert der Asphaltbetone mit den Grauwacke- bzw.	
	Basaltbrechsanden	74
Tabelle 7-10:	D-Wert der Splittmastixasphalte mit den Grauwacke- und	
	Basaltbrechsanden	74
Tabelle 7-11:	Einfaktorielle Varianzanalyse der D-Werte der Asphalte	76
Tabelle 7-12:	Spaltzugfestigkeitsabfall der Asphaltbetone bei optimalem	
	Bindemittelgehalt mit den Grauwacke- und Basaltbrechsanden	76
Tabelle 7-13:	Spaltzugfestigkeitsabfall der Splittmastixasphalte bei optimalem	
	Bindemittelgehalt mit den Grauwacke- und Basaltbrechsanden	76
Tabelle 7-14:	Einfaktorielle Varianzanalyse des SZA der Asphalte	78
Tabelle 7-15:	Stabilitäten der Asphaltbetone mit den Grauwacke- und	
	Basaltbrechsanden	78

Tabelle 7-16:	Fließwerte der Asphaltbetone mit den Grauwacke- und	
	Basaltbrechsanden	78
Tabelle 7-17:	Einfaktorielle Varianzanalyse der Stabilitäten und Fließwerte der	
	Asphaltbetone	80
Tabelle 8-1:	Frischbetoneigenschaften der Betone B25	81
Tabelle 8-2:	Frischbetoneigenschaften der Betone B55	81
Tabelle 8-3:	Festbetoneigenschaften der Betone B25	82
Tabelle 8-4:	Festbetoneigenschaften der Betone B55	83
Tabelle 9-1:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und dem fiktiven Hohlraumgehalt der Asphaltbetone	84
Tabelle 9-2:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und dem fiktiven Hohlraumgehalt der Splittmastix-	
	asphalte	85
Tabelle 9-3:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und der Dehnung des Asphaltbetons nach 10 kLW ( $\epsilon_{10}$ ).	89
Tabelle 9-4:	Funktionaler Zusammenhang zwischen den photooptischen	
	Brechsandeigenschaften und der Dehnung des Splittmastix-	
	asphaltes nach 4 kLW (ɛ4)	89
Tabelle 9-5:	Funktionaler Zusammenhang zwischen den Brechsand-	
	eigenschaften und der Dehnungsrate $\epsilon_w^*$ des Asphaltbetons	93
Tabelle 9-6:	Funktionaler Zusammenhang zwischen den photooptischen	
	Brechsandeigenschaften und der Dehnungsrate $\epsilon_w^*$ des	
	Splittmastixasphaltes	94
Tabelle 9-7:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und dem Verdichtungswiderstand (D-Wert) der	
	Asphaltbetone	97
Tabelle 9-8:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und dem Verdichtungswiderstand (D-Wert) der	
	Splittmastixasphalte	98
Tabelle 9-9:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und dem Spaltzugfestigkeitsabfall (SZA) der Asphalt-	
	betone	.102
Tabelle 9-10:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und dem Spaltzugfestigkeitsabfall (SZA) der Splitt-	
	mastixasphalte	.103
Tabelle 9-11:	Funktionaler Zusammenhang zwischen den Brechsandeigen-	
	schaften und der Stabilität der Asphaltbetone	.107
I abelle 10-1:	Maximale Korrelationen zwischen Brechsandeigenschaften und	
	Eigenschaften von Asphaltbeton (AB) und Splittmastixasphalt	
	(SMA)	.111

### 14.2 Abbildungsverzeichnis

Abbildung 2-1:	Fließschema der durchgeführten Untersuchungen	4
Abbildung 3-1:	Aufbereitungsstufen der Brechsandherstellung	7
Abbildung 3-2:	Sieblinien der Asphaltbetone 0/11 S	.11
Abbildung 3-3:	Sieblinien der Splittmastixasphalte 0/11 S	.11
Abbildung 3-4:	Sieblinie mit Natursand	.17
Abbildung 3-5:	Sieblinie mit B02	.17
Abbildung 3-6:	Sieblinie mit B08oK	.18
Abbildung 3-7:	Sieblinie mit K02	.18
Abbildung 3-8:	Sieblinie mit K08oK	.19
Abbildung 4-1:	Messprinzip eines CPA-Gerätes mit CCD-Zeilenkamera	.21
Abbildung 4-2:	Statistische Längen im Vergleich	.22
Abbildung 6-1:	Fließzahl der Brechsande aus Grauwacke und Basalt	.28
Abbildung 6-2:	Abrieb in der Kugelmühle der Brechsande aus Grauwacke	
-	und Basalt	.29
Abbildung 6-3:	Ungleichförmigkeitszahlen D25/D75 der Brechsande aus	
-	Grauwacke und Basalt	.30
Abbildung 6-4:	Korngrößenverteilung der Grauwackebrechsande ( $\delta = d_F$ )	.32
Abbildung 6-5:	Korngrößenverteilung der Basaltbrechsande ( $\delta = d_F$ )	.32
Abbildung 6-6:	Korngrößenverteilung der Grauwackebrechsande ( $\delta = d_{\mathbb{A}}$ )	.34
Abbildung 6-7:	Korngrößenverteilung der Basaltbrechsande ( $\delta = d_{\Delta}$ )	.34
Abbildung 6-8:	Approximation der theoretischen an die tatsächliche Verteilung	
<b>J</b>	für den Grauwackebrechsand	.37
Abbildung 6-9:	Vergleich der RRSBn-Parameter für die Brechsande aus	
5	Grauwacke und Basalt	.37
Abbildung 6-10:	Vergleich von D25/D75 _F und FG _F für die Brechsande aus	
Ū	Grauwacke und Basalt	.38
Abbildung 6-11:	Vergleich von D25/D75 ^a und FG ^a für die Brechsande aus	
U	Grauwacke und Basalt	.38
Abbildung 6-12:	Kornanzahlverteilung der Grauwackebrechsande ( $\delta = d_F$ )	.41
Abbildung 6-13:	Kornanzahlverteilung der Basaltbrechsande ( $\delta = d_{F}$ )	.41
Abbildung 6-14:	Kornanzahlverteilung der Grauwackebrechsande ( $\delta = d_{A}$ )	.42
Abbildung 6-15:	Kornanzahlverteilung der Basaltbrechsande ( $\delta = d_{\lambda}$ )	.42
Abbildung 6-16	Kornanzahlverteilungsguotient OKAs für die Brechsande aus	
	Grauwacke und Basalt	43
Abbildung 6-17:	Mittelwerte der zusammengefassten Parameter Fsen für	
	Grauwacke- und Basaltbrechsand	.44
Abbilduna 6-18:	Mittelwerte der zusammengefassten Parameter Fsän für	
i la chia chi gʻoʻlor	Grauwacke- und Basaltbrechsand	.45
Abbilduna 6-19:	Mittelwerte der zusammengefassten Parameter Fkuh En für	
<b>J</b>	Grauwacke- und Basaltbrechsand	.46
Abbildung 6-20:	Mittelwerte der zusammengefassten Parameter F _{Kub Än} für	
0	Grauwacke- und Basaltbrechsand	.47
Abbildung 6-21:	Mittelwerte der zusammengefassten Parameter F _{Kon En} für	
Ū	Grauwacke- und Basaltbrechsand	.48
Abbildung 6-22:	Mittelwerte der zusammengefassten Parameter F _{Kon.Ä.n} für	
-	Grauwacke- und Basaltbrechsand	.48
Abbildung 6-23:	Fließzahl von Natursand sowie der Kalkstein- und	
	Basaltbrechsande	.49

Abbildung 6-24:	Abrieb in der Kugelmühle von Natursand sowie der Kalkstein- und Basaltbrechsande	50
Abbildung 6-25:	Korngrößenverteilung des Natursandes und der Kalkstein- brechsande	
Abbildung 6-26 [.]	Korngrößenverteilung der Basaltbrechsande	51
Abbildung 6-27	Ungleichförmigkeit D25/D75 des Natursandes sowie der	
,	Kalkstein- und Basaltbrechsande	52
Abbildung 6-28:	Korngrößenverteilung des Natusandes und der Kalkstein-	-
Ū	brechsande ( $\delta = d_F$ )	54
Abbildung 6-29:	Korngrößenverteilung ( $\delta$ = d _Å ) des Natursandes sowie der	
0	Kalksteinbrechsande	55
Abbildung 6-30:	Vergleich der RRSBn-Parameter bei Natursand sowie bei	
	den Kalkstein- und Basaltbrechsanden	57
Abbildung 6-31:	Vergleich der D25/D75-Parameter für den Natursand sowie	
	die Kalkstein- und Basaltbrechsande	57
Abbildung 6-32:	Kornanzahlverteilung des Natursandes und des Kalkstein	
	brechsandes ( $\delta = d_F$ )	60
Abbildung 6-33:	Kornanzahlverteilung des Natursandes und des Kalkstein	
	brechsandes ( $\delta = d_{A}$ )	60
Abbildung 6-34:	Mittelwerte der zusammengetassten Parameter für die	
	Spharizitaten F _{S,F,n} des Natursandes sowie der Kaikstein-	60
Abbildung 6 25:	UIIU Basallorechsande	02
Abbildung 0-55.	Sphärizitäton E dos Natursandos sowio dor Kalkstoin	
	und Basalthrechsande	62
Abbildung 6-36	Mittelwerte der zusammengefassten Parameter für die	02
/ loondarig e ee.	Kubizitäten Fkub E des Natursandes sowie der Kalkstein-	
	und Basaltbrechsande	64
Abbildung 6-37:	Mittelwerte der zusammengefassten Parameter für die	
Ū	Kubizitäten F _{Kub.Ä} des Natursandes sowie der Kalkstein-	
	und Basaltbrechsande	64
Abbildung 6-38:	Mittelwerte der zusammengefassten Parameter für die	
	Konkavitäten F _{Kon,F} des Natursandes sowie der Kalkstein-	
	und Basaltbrechsande	66
Abbildung 6-39:	Mittelwerte der zusammengefassten Parameter für die	
	Konkavitäten F _{Kon,Ä} des Natursandes sowie der Kalkstein-	~~
	und Basaltbrechsande	66
Abbildung 7-1:	Honiraumgenaite der Aspnaitbetone	68
Abbildung 7-2.	Filitive Hebraumgehelte der Aanhelthetene	00
Abbildung 7-3.	Fiktive Hohraumgehalte der Splittmastivasphalte	70
Abbildung $7-4$ .	Verformungseigenschaften der Asnhalthetone mit ontimalem	
Abbildung 7-5.	Rindemittelgehalt im einaxialen Druckschwellversuch	72
Abbildung 7-6 [.]	Verformungseigenschaften der Splittmastixasphalte mit	
, toolidarig r o.	optimalem Bindemittelgehalt im einaxialen Druckschwell-	
	versuch	73
Abbildung 7-7:	D-Werte der Asphaltbetone mit optimalem Bindemittelgehalt	75
Abbildung 7-8:	D-Werte der Splittmastixasphalte mit optimalem Bindemittel-	
-	gehalt	75
Abbildung 7-9:	Spaltzugfestigkeitsabfall (SZA) der Asphaltbetone mit	
	optimalem Bindemittelgehalt	77

Abbildung 7-10:	Spaltzugfestigkeitsabfall (SZA) der Splittmastixasphalte mit
	Optimalem Bindemittelgenalt
Abbildung 7-11:	Stabilitaten der Asphaltbetone mit optimalem Bindemittelgenalt ./9
Abbildung 7-12:	Fileiswerte der Asphaltbetone mit optimalem Bindemitteigenalt / 9
Abbildung 9-1:	Fiktiver Honiraumgenalt der Aspnaltbetone und inn beeinflus-
	sende Brechsandeigenschaft Abrieb in der Kugelmunie
Abbildung 9-2:	Fiktiver Hohlraumgehalt der Asphaltbetone und ihn beeinflus-
	sende photooptische Brechsandeigenschaft ( $\delta = d_F$ )
Abbildung 9-3:	Fiktiver Hohlraumgehalt der Asphaltbetone und ihn beeinflus-
	sende photooptische Brechsandeigenschaft ( $\delta = d_{A}$ )
Abbildung 9-4:	Fiktiver Hohlraumgehalt der Splittmastixasphalte und ihn
	beeinflussende mechanische Brechsandeigenschaft Abrieb
	in der Kugelmühle87
Abbildung 9-5:	Fiktiver Hohlraumgehalt der Splittmastixasphalte und ihn
-	beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ )87
Abbildung 9-6:	Fiktiver Hohlraumgehalt der Splittmastixasphalte und ihn beein-
0	flussende photooptische Brechsandeigenschaften ( $\delta = d_{A}$ )
Abbilduna 9-7 [.]	810 und beeinflussende mechanische Brechsandeigenschaft
/ loondarig o / .	Abrieb in der Kugelmühle 90
Abbildung 9-8.	sto und beeinflussende nhotoontische Brechsandeigenschaften
Abbildung 5 0.	$(s - d_{-})$
	(0 - up) havinflueranda aboteentiesha Dreebeendeigeneebeften
Abbildung 9-9.	
	$(o = a_{A})$
Abbildung 9-10:	$\epsilon_4$ und beeinflussende photooptische Brechsandeigenschaften
	$(\delta = d_F)91$
Abbildung 9-11:	$\epsilon_4$ und beeinflussende photooptische Brechsandeigenschaften
	$(\delta = d_{\ddot{A}})92$
Abbildung 9-12:	${f \epsilon_w}^*$ der Asphaltbetone und beeinflussende mechanische
	Brechsandeigenschaft Abrieb in der Kugelmühle94
Abbildung 9-13:	$\epsilon_w^*$ der Asphaltbetone und beeinflussende photooptische
	Brechsandeigenschaft ( $\delta = d_F$ )
Abbildung 9-14:	$\varepsilon_w^*$ der Asphaltbetone und beeinflussende photooptische
0	Brechsandeigenschaft ( $\delta = d_{\bar{a}}$ )
Abbildung 9-15:	ε _w * der Splittmastixasphalte und beeinflussende photooptische
	Brechsandeigenschaft ( $\delta = d_r$ ) 96
Abbildung 9-16	s* der Splittmastivasphalte und beeinflussende photoontische
Abbildung 9-10.	$\mathcal{E}_W$ der Opintindstindspilatie und beeinindssende photooptische Brechsandeigenschaft ( $\delta$ -d _x )
Abbildung 0 17:	D Wert der Asphalthetone und beeinflussende mechanische
Abbildung 9-17.	Brechsandeigenschaft Abrieb in der Kugelmühle
Abbildung 0 18:	D Wert der Asphalthetone und beeinflussende photoontische
Abbildung 9-10.	Drochoondoigeneehoft (S = d.)
	Diechsählueigenschält $(0 - u_F)$
Abbildurig 9-19.	D-weit der Asphälibelone und beenmussende photooplische
	Brechsandeigenschaft ( $\delta = d_{A}^{2}$ )
Abbildung 9-20:	D-wert der Spittmastixasphalte und beeinflussende
	mechanische Brechsandeigenschaπ Abrieb in der Kugeimuhle 100
Abbildung 9-21:	U-vvert der Spirttmastixasphalte und beeinflussende photo-
	optische Brechsandeigenschaft ( $\delta$ =d _F )100
Abbildung 9-22:	D-vvert der Splittmastixasphalte und beeinflussende photo-
	optische Brechsandeigenschaft ( $\delta$ =d _Ä )101

SZA der Asphaltbetone und beeinflussende mechanische	
Brechsandeigenschaft Abrieb in der Kügelmühle	103
SZA der Asphaltbetone und beeinflussende photooptische	
Brechsandeigenschaft ( $\delta = d_F$ )	104
SZA der Asphaltbetone und beeinflussende photooptische	
Brechsandeigenschaft ( $\delta = d_{A}$ )	104
SZA der Splittmastixasphalte und beeinflussende	
mechanische Brechsandeigenschaft Abrieb in der	
Kugelmühle	105
SZA der Splittmastixasphalte und beeinflussende photo-	
optische Brechsandeigenschaften ( $\delta = d_F$ )	105
SZA der Splittmastixasphalte und beeinflussende photo-	
optische Brechsandeigenschaften ( $\delta = d_{A}$ )	106
Stabilität der Asphaltbetone und beeinflussende mechanische	;
Brechsandeigenschaft Abrieb in der Kugelmühle	107
Stabilität der Asphaltbetone und beeinflussende photo-	
optische Brechsandeigenschaft ( $\delta = d_F$ )	108
Stabilität der Asphaltbetone und beeinflussende photo-	
optische Brechsandeigenschaft ( $\delta = d_{A}$ )	108
Verdichtungsmaß der Betone B25	116
Zusammenhang zwischen Verdichtungsmaß und Luftporen-	
gehalt im Frischbeton	117
	SZA der Asphaltbetone und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kügelmühle SZA der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_F$ ) SZA der Asphaltbetone und beeinflussende photooptische Brechsandeigenschaft ( $\delta = d_{\bar{A}}$ ) SZA der Splittmastixasphalte und beeinflussende mechanische Brechsandeigenschaft Abrieb in der Kugelmühle SZA der Splittmastixasphalte und beeinflussende photo- optische Brechsandeigenschaften ( $\delta = d_F$ ) SZA der Splittmastixasphalte und beeinflussende photo- optische Brechsandeigenschaften ( $\delta = d_F$ ) Stabilität der Asphaltbetone und beeinflussende mechanische Brechsandeigenschaft ( $\delta = d_{\bar{A}}$ ) Stabilität der Asphaltbetone und beeinflussende photo- optische Brechsandeigenschaft ( $\delta = d_F$ ) Stabilität der Asphaltbetone und beeinflussende photo- optische Brechsandeigenschaft ( $\delta = d_F$ ) Stabilität der Asphaltbetone und beeinflussende photo- optische Brechsandeigenschaft ( $\delta = d_F$ ) Stabilität der Asphaltbetone und beeinflussende photo- optische Brechsandeigenschaft ( $\delta = d_F$ ) Stabilität der Asphaltbetone und beeinflussende photo- optische Brechsandeigenschaft ( $\delta = d_F$ ) Stabilität der Asphaltbetone und beeinflussende photo- optische Brechsandeigenschaft ( $\delta = d_{\bar{A}}$ )

### Anhänge

#### Inhaltsverzeichnis

- Anhang 1: Sphärizitäten der Brechsande
- Anhang 2: Kubizitäten der Brechsande
- Anhang 3: Konkavitäten der Brechsande
- Anhang 4: Ergebnisse der statistischen Auswertung der Untersuchungsergebnisse
- Anhang 5: Ergebnisse der Regressionsanalysen

#### Sphärizitäten der Brechsande

Kornklasso	F _{S,F}									
	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,15	1,164	1,161	1,179	1,218	1,146	1,148	1,150	1,182	1,241
2,000-1,600	1,147	1,156	1,154	1,171	1,205	1,145	1,142	1,149	1,161	1,216
1,600-1,000	1,135	1,144	1,145	1,144	1,184	1,129	1,134	1,137	1,143	1,178
1,000-0,710	1,119	1,128	1,132	1,137	1,161	1,115	1,118	1,117	1,116	1,147
0,710-0,630	1,11	1,120	1,124	1,131	1,146	1,105	1,107	1,106	1,106	1,128
0,630-0,500	1,106	1,114	1,120	1,126	1,136	1,099	1,102	1,102	1,101	1,116
0,500-0,400	1,095	1,100	1,106	1,112	1,115	1,085	1,085	1,093	1,090	1,095
0,400-0,315	1,081	1,083	1,087	1,091	1,091	1,073	1,073	1,079	1,078	1,076

 Tabelle A1-1:
 Sphärizitäten F_{S,F} der Grauwacke- und Basaltbrechsande

 Tabelle A1-2:
 Sphärizitäten F_{S,Ä} der Grauwacke- und Basaltbrechsande

Kornklasse	F _{s,Ä}									
i toi ii kia 350	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,135	1,134	1,162	1,162	1,22	1,143	1,146	1,163	1,153	1,194
2,000-1,600	1,136	1,137	1,16	1,151	1,202	1,141	1,138	1,132	1,156	1,189
1,600-1,000	1,131	1,129	1,141	1,14	1,17	1,13	1,125	1,127	1,124	1,165
1,000-0,710	1,119	1,116	1,122	1,121	1,145	1,113	1,112	1,112	1,104	1,141
0,710-0,630	1,109	1,105	1,113	1,113	1,13	1,104	1,101	1,104	1,094	1,123
0,630-0,500	1,1	1,098	1,105	1,108	1,119	1,095	1,09	1,096	1,085	1,107
0,500-0,400	1,089	1,087	1,097	1,099	1,103	1,082	1,076	1,087	1,075	1,09
0,400-0,315	1,075	1,073	1,083	1,087	1,083	1,069	1,064	1,072	1,066	1,071



Abbildung A1-1: Sphärizitäten F_{S,F} der Grauwacke- und Basaltbrechsande



Abbildung A1-2: Sphärizitäten F_{S,Ä} der Grauwacke- und Basaltbrechsande

		F _{S,F}							
		2,5-2,0	2,0-1,6	1,6-1,0	1-0,71	0,71-0,63	0,63-0,5	0,5-0,4	0,4-0,315
F _{S,F}	Korrel.	1,000	0,986	0,941	0,829	0,719	0,608	0,432	0,263
2,5-2,0	Signif.	0,000	0,000	0,000	0,003	0,019	0,062	0,212	0,463
F _{S,F}	Korrel.		1,000	0,963	0,887	0,784	0,678	0,504	0,328
2,0-1,6	Signif.		0,000	0,000	0,001	0,007	0,031	0,137	0,355
F _{S,F}	Korrel.			1,000	0,929	0,831	0,738	0,565	0,398
1,6-1,0	Signif.			0,000	0,000	0,003	0,015	0,089	0,255
F _{S,F}	Korrel.				1,000	0,973	0,922	0,781	0,630
1-0,71	Signif.				0,000	0,000	0,000	0,008	0,051
F _{S,F}	Korrel.					1,000	0,985	0,893	0,777
0,71-0,63	Signif.					0,000	0,000	0,001	0,008
F _{S,F}	Korrel.						1,000	0,951	0,866
0,63-0,5	Signif.						0,000	0,000	0,001
F _{S,F}	Korrel.							1,000	0,975
0,5-0,4	Signif.							0,000	0,000
F _{S,F}	Korrel.								1,000
0,4-0,315	Signif.								0,000

Tabelle A1-3: Bivariate Korrelation der Sphärizitäten F_{S,F}

		F _{S,Ä}							
		2,5-2,0	2,0-1,6	1,6-1,0	1,0-0,71	0,71-0,63	0,63-0,5	0,5-0,4	0,4-0,315
F _{S,Ä}	Korrel.	1,000	0,919	0,906	0,841	0,823	0,740	0,600	0,402
2,5-2	Signif.	0,000	0,000	0,000	0,002	0,003	0,014	0,067	0,249
F _{S,Ä}	Korrel.		1,000	0,934	0,860	0,811	0,703	0,539	0,360
2-1,6	Signif.		0,000	0,000	0,001	0,004	0,023	0,108	0,308
F _{S,Ä}	Korrel.			1,000	0,980	0,958	0,871	0,710	0,495
1,6-1	Signif.			0,000	0,000	0,000	0,001	0,021	0,146
F _{S,Ä}	Korrel.				1,000	0,983	0,900	0,735	0,504
1-0,71	Signif.				0,000	0,000	0,000	0,015	0,138
F _{S,Ä}	Korrel.					1,000	0,962	0,840	0,640
0,71-0,63	Signif.					0,000	0,000	0,002	0,046
F _{S,Ä}	Korrel.						1,000	0,949	0,812
0,63-0,5	Signif.						0,000	0,000	0,004
F _{S,Ä}	Korrel.							1,000	0,944
0,5-0,4	Signif.							0,000	0,000
F _{S,Ä}	Korrel.								1,000
0,4-0,315	Signif.								0,000

		F _{S,F,1}	F _{S,F,2}	F _{S,F,3}
F	Korrelation	1,000	0,795	0,429
ΓS,F,1	Signifikanz	0,000	0,006	0,216
F	Korrelation		1,000	0,838
F _{S,F,2}	Signifikanz		0,000	0,002
E	Korrelation			1,000
۳S,F,3	Signifikanz			0,000

 TabelleA1-5:
 Eingeschränkt kolineare Parameter F_{S,F,n}

#### Tabelle A1-6: Eingeschränkt kolineare Parameter F_{S,Ä,n}

		F _{S,Ä,1}	F _{S,Ä,2}	F _{S,Ä,3}
	Korrelation	1,000	0,874	0,538
F _{S,Ä,1}	Signifikanz	0,000	0,001	0,108
	(2-seitig)			
	Korrelation		1,000	0,768
F _{S,Ä,2}	Signifikanz		0,000	0,010
	(2-seitig)			
	Korrelation			1,000
F _{S,Ä,3}	Signifikanz			0,000
	(2-seitig)			

### Tabelle A1-7: Varianzanalyse zur Klärung des Einflusses der Gesteinsart auf die Sphärizitäten

		Quadrat- summe	df	Mittel der Quadrate	F	Signifikanz
	Zwischen den Gesteinsarten	1,0E-05	1	1,0E-05		
F _{S,F,1}	Innerhalb der Gesteinsarten	5,88E-03	8	7,35E-04	0,014	0,91
	Gesamt	5,89E-03	9			
	Zwischen den Gesteinsarten	4,9E-04	1	4,9E-04		
F _{S,F,2}	Innerhalb der Gesteinsarten	1,2E-03	8	1,5E-04	3,267	0,108
	Gesamt	1,69E-03	9			
	Zwischen den Gesteinsarten	3,6E-04	1	3,6E-04	12,0	0,009
F _{S,F,3}	Innerhalb der Gesteinsarten	2,4E-04	8	3,0E-05		
	Gesamt	6,0E-04	9			
	Zwischen den Gesteinsarten	7,840E-05	1	7,840E-05		
F _{S,Ä,1}	Innerhalb der Gesteinsarten	4,218E-03	8	5,273E-04	0,149	0,710
	Gesamt	4,297E-03	9			
	Zwischen den Gesteinsarten	2,240E-04	1	2,240E-04		
F _{S,Ä,2}	Innerhalb der Gesteinsarten	8,571E-04	8	1,071E-04	2,091	0,186
	Gesamt	1,081E-03	9			
F _{S,Ä,3}	Zwischen den Gesteinsarten	3,844E-04	1	3,844E-04	12 35	
	Innerhalb der Gesteinsarten	2,490E-04	8	3,112E-05	0	0,008
	Gesamt	6,334E-04	9			
### Kubizitäten der Brechsande

	F _{Kub,F}									
Kornklasse	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,484	1,545	1,588	1,562	1,729	1,464	1,505	1,526	1,613	1,792
2,000-1,600	1,467	1,486	1,529	1,531	1,676	1,464	1,476	1,507	1,574	1,722
1,600-1,000	1,454	1,473	1,51	1,454	1,584	1,439	1,474	1,485	1,542	1,653
1,000-0,710	1,429	1,438	1,485	1,469	1,524	1,433	1,449	1,441	1,45	1,593
0,710-0,630	1,405	1,411	1,463	1,464	1,479	1,404	1,433	1,42	1,418	1,534
0,630-0,500	1,394	1,395	1,446	1,458	1,465	1,395	1,418	1,422	1,404	1,478
0,500-0,400	1,365	1,362	1,409	1,43	1,427	1,353	1,383	1,394	1,381	1,395
0,400-0,315	1,344	1,338	1,379	1,396	1,383	1,332	1,352	1,371	1,363	1,332

Tabelle A2-1: Kubizitäten F_{Kub,F} der Grauwacke- und Basaltbrechsande

Tabelle A2-2:	Kubizitäten F _{Kub,Ä}	der Grauwacke-	und Basaltbrechsande
---------------	--------------------------------	----------------	----------------------

		F _{Kub,Ä}								
Kornklasse	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,346	1,347	1,414	1,431	1,565	1,347	1,366	1,292	1,352	1,552
2,000-1,600	1,365	1,375	1,428	1,415	1,496	1,344	1,327	1,303	1,438	1,502
1,600-1,000	1,37	1,373	1,408	1,4	1,476	1,359	1,351	1,326	1,371	1,487
1,000-0,710	1,384	1,372	1,377	1,395	1,429	1,358	1,358	1,340	1,339	1,459
0,710-0,630	1,382	1,364	1,37	1,388	1,41	1,354	1,341	1,352	1,333	1,430
0,630-0,500	1,363	1,357	1,36	1,383	1,39	1,340	1,337	1,351	1,324	1,409
0,500-0,400	1,35	1,34	1,351	1,367	1,362	1,332	1,325	1,352	1,312	1,382
0,400-0,315	1,352	1,344	1,348	1,368	1,355	1,327	1,326	1,364	1,315	1,359



Abbildung A2-1: Kubizitäten F_{Kub,F} der Grauwacke- und Basaltbrechsande



Abbildung A2-2: Kubizitäten F_{Kub,Ä} der Grauwacke- und Basaltbrechsande

		F _{Kub,F}	<b>F</b> _{Kub,F}	$F_{Kub,F}$	F _{Kub,F}				
		2,5-2,0	2,0-1,6	1,6-1,0	1,0-0,71	0,71-0,63	0,63-0,5	0,5-0,4	0,4-0,315
F _{Kub,F}	Korrel.	1,000	0,988	0,964	0,935	0,877	0,798	0,543	0,122
2,5-2,0	Signif.	0,000	0,000	0,000	0,000	0,001	0,006	0,104	0,736
F _{Kub,F}	Korrel.		1,000	0,959	0,930	0,865	0,789	0,542	0,123
2,0-1,6	Signif.		0,000	0,000	0,000	0,001	0,006	0,105	0,743
F _{Kub,F}	Korrel.			1,000	0,907	0,813	0,689	0,380	-0,039
1,6-1,0	Signif.			0,000	0,000	0,004	0,028	0,278	0,915
F _{Kub,F}	Korrel.				1,000	0,970	0,873	0,518	0,0230
1,0-0,71	Signif.				0,000	0,000	0,001	0,125	0,95
F _{Kub,F}	Korrel.					1,000	0,948	0,655	0,184
0,71-0,63	Signif.					0,000	0,000	0,040	0,611
F _{Kub,F}	Korrel.						1,000	0,847	0,459
0,63-0,5	Signif.						0,000	0,002	0,182
F _{Kub,F}	Korrel.							1,000	0,855
0,5-0,4	Signif.							0,000	0,002
F _{Kub,F}	Korrel.								1,000
0,4-0,315	Signif.								0,000

TabelleA2-3: Bivariate Korrelation der Kubizitäten F_{Kub,F}

Tabelle A2-4:	Bivariate	Korrelation	der	Kubizitäten	F _{Kub,Ä}
---------------	-----------	-------------	-----	-------------	--------------------

		F _{Kub,Ä}							
		2,5-2,0	2,0-1,6	1,6-1,0	1,0-0,71	0,71-0,63	0,63-0,5	0,5-0,4	0,4-0,315
F _{Kub,Ä}	Korrel.	1,000	0,884	0,978	0,918	0,853	0,821	0,665	0,356
2,5-2,0	Signif.	0,000	0,001	0,000	0,000	0,002	0,004	0,036	0,313
F _{Kub,Ä}	Korrel.		1,000	0,932	0,772	0,710	0,656	0,481	0,185
2,0-1,6	Signif.		0,000	0,000	0,009	0,021	0,039	0,159	0,608
F _{Kub,Ä}	Korrel.			1,000	0,933	0,880	0,835	0,680	0,360
1,6-1,0	Signif.			0,000	0,000	0,001	0,003	0,030	0,307
F _{Kub,Ä}	Korrel.				1,000	0,973	0,944	0,825	0,531
1,0-0,71	Signif.				0,000	0,000	0,000	0,003	0,114
F _{Kub,Ä}	Korrel.					1,000	0,981	0,911	0,683
0,71-0,63	Signif.					0,000	0,000	0,000	0,030
F _{Kub,Ä}	Korrel.						1,000	0,957	0,777
0,63-0,5	Signif.						0,000	0,000	0,008
F _{Kub,Ä}	Korrel.							1,000	0,897
0,5-0,4	Signif.							0,000	0,000
F _{Kub,Ä}	Korrel.								1,000
0,4-0,315	Signif.								0,000

		F _{Kub,F,1}	F _{Kub,F,2}	F _{Kub,F,3}	F _{Kub,F,4}
<b>F</b>	Korrelation	1,000	0,862	0,512	0,073
■Kub,F,1	Signifikanz	0,000	0,001	0,130	0,842
<b>F</b>	Korrelation		1,000	0,748	0,307
rKub,F,2	Signifikanz		0,000	0,013	0,388
E	Korrelation			1,000	0,855
rKub,F,3	Sigifikanz			0,000	0,002
E	Korrelation				1,000
I Kub,F,4	Signifikanz				0,000

Tabelle A2-5: Eingeschränkt kolineare Parameter FKub,F,n

Tabelle A2-5:	Eingeschränkt kolineare Parameter F _{Kub,Ä,n}
---------------	--------------------------------------------------------

		F _{Kub,Ä,1}	F _{Kub,Ä,2}	F _{Kub,Ä,3}	F _{Kub,Ä,4}
F _{Kub,Ä,1}	Korrelation	1,000	0,941	0,881	0,537
	Signifikanz	0,000	0,000	0,001	0,110
F _{Kub,Ä,2}	Korrelation		1,000	0,817	0,446
	Signifikanz		0,000	0,004	0,197
<b>E</b>	Korrelation			1,000	0,808
ΓKub,Â,3	Signifikanz			0,000	0,005
F _{Kub,Ä,4}	Korrelation				1,000
	Signifikanz				0,000

		Quadrat-	df	Mittel der	F	Signifikanz	
		summe	u	Quadrate	'	Signinkanz	
	Zwischen den Gesteinsarten	1,6E-04	1	1,6E-04			
F _{Kub,F,1}	Innerhalb der Gesteinsarten	5,38E-02	8	6,66E-03	0,024	0,881	
	Gesamt	5,34E-02	9				
	Zwischen den Gesteinsarten	1,0E-05	1	1,0E-05			
F _{Kub,F,2}	Innerhalb der Gesteinsarten	1,22E-02	8	1,53E-03	0,007	0,938	
	Gesamt	1,23E-02	9				
	Zwischen den Gesteinsarten	1,0E-03	1	1,0E-03			
F _{Kub,F,3}	Innerhalb der Gesteinsarten	5,8E-03	8	7,25E-04	1,379	0,274	
	Gesamt	6,8E-03	9				
	Zwischen den Gesteinsarten	1,0E-03	1	1,0E-03			
$F_{Kub,F,4}$	Innerhalb der Gesteinsarten	4,16E-03	8	5,2E-04	1,923	0,203	
	Gesamt	5,16E-03	9				
	Zwischen den Gesteinsarten	3,764E-03	1	3,764E-03			
F _{Kub,Ä,1}	Innerhalb der Gesteinsarten	7,137E-02	8	8,921E-03	0,422	0,534	
	Gesamt	7,513E-02	9				
	Zwischen den Gesteinsarten	2,220E-03	1	2,220E-03			
F _{Kub,Ä,2}	Innerhalb der Gesteinsarten	2,944E-02	8	3,680E-03	0,603	0,460	
	Gesamt	3,166E-02	9				
	Zwischen den Gesteinsarten	9,933E-04	1	9,933E-04			
F _{Kub,Ä,3}	Innerhalb der Gesteinsarten	7,827E-03	8	9,784E-04	1,015	0,343	
	Gesamt	8,821E-03	9		1		
	Zwischen den Gesteinsarten	5,112E-04	1	5,112E-04			
F _{Kub,Ä,4}	Innerhalb der Gesteinsarten	2,651E-03	8	3,313E-04	1,543	0,249	
	Gesamt	3,162E-03	9		1		

# Tabelle A2-7:Varianzanalyse zur Klärung des Einflusses der Gesteinsart auf<br/>die Kubizitäten

		F _{Kon,F}								
Kornklasse	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,559	1,624	1,671	1,652	1,842	1,538	1,571	1,595	1,699	1,914
2,000-1,600	1,535	1,561	1,606	1,616	1,782	1,540	1,544	1,579	1,654	1,836
1,600-1,000	1,524	1,548	1,581	1,522	1,682	1,504	1,544	1,550	1,619	1,754
1,000-0,710	1,494	1,509	1,553	1,537	1,612	1,495	1,510	1,501	1,513	1,773
0,710-0,630	1,464	1,479	1,527	1,531	1,557	1,461	1,490	1,475	1,474	1,610
0,630-0,500	1,453	1,464	1,510	1,527	1,541	1,452	1,474	1,475	1,459	1,543
0,500-0,400	1,418	1,415	1,466	1,494	1,489	1,398	1,431	1,443	1,429	1,444
0,400-0,315	1,391	1,388	1,425	1,449	1,438	1,374	1,392	1,412	1,408	1,370

Tabelle A3-1: Konkavitäten F_{Kon,F} der Grauwacke- und Basaltbrechsande

Tabelle A	3-2:	Konkavitäten F _{Kon,Ä} der	r Grauwacke- und Basaltbrechsande

				п,д						
					F _{Ko}	n,Ä				
Kornklasse	G02K	G02oK	G08K	G08oK	G02	B02K	B02oK	B08K	B08oK	B02
2,500-2,000	1,407	1,396	1,492	1,505	1,661	1,415	1,430	1,416	1,403	1,646
2,000-1,600	1,427	1,435	1,510	1,482	1,588	1,400	1,389	1,414	1,506	1,589
1,600-1,000	1,434	1,435	1,474	1,463	1,557	1,420	1,413	1,443	1,429	1,566
1,000-0,710	1,447	1,432	1,433	1,454	1,502	1,416	1,414	1,399	1,391	1,529
0,710-0,630	1,442	1,420	1,427	1,446	1,476	1,408	1,394	1,383	1,384	1,493
0,630-0,500	1,417	1,413	1,414	1,439	1,451	1,391	1,385	1,381	1,366	1,464
0,500-0,400	1,401	1,387	1,402	1,416	1,417	1,379	1,369	1,359	1,349	1,428
0,400-0,315	1,391	1,383	1,391	1,413	1,399	1,366	1,361	1,360	1,353	1,395



Bild A3-1: Konkavitäten F_{Kon,F} der Grauwacke- und Basaltbrechsande



Bild A3-2: Konkavitäten F_{Kon,Ä} der Grauwacke- und Basaltbrechsande

		F _{Kon,F}							
		2,5-2,0	2,0-1,6	1,6-1,0	1,0-0,71	0,71-0,63	0,63-0,5	0,5-0,4	0,4-0,315
F _{Kon,F}	Korrel.	1 000	0,989	0,964	0,909	0,899	0,813	0,512	0,124
2,5-2	Signif.	1,000	0,000	0,000	0,000	0,000	0,004	0,130	0,733
F _{Kon,F}	Korrel.		1,000	0,958	0,906	0,884	0,804	0,502	0,114
2,0-1,6	Signif.		0,000	0,000	0,000	0,001	0,005	0,139	0,754
F _{Kon,F}	Korrel.			1,000	0,901	0,821	0,678	0,331	-0,061
1,6-1,0	Signif.			0,000	0,000	0,004	0,031	0,350	0,866
F _{Kon,F}	Korrel.				1,000	0,938	0,783	0,345	-0,147
1,0-0,71	Signif.				0,000	0,000	0,007	0,329	0,685
F _{Kon,F}	Korrel.					1,000	0,944	0,627	0,164
0,71-0,63	Signif.					0,000	0,000	0,053	0,651
F _{Kon,F}	Korrel.						1,000	0,836	0,458
0,63-0,5	Signif.						0,000	0,003	0,183
F _{Kon,F}	Korrel.							1,000	0,864
0,5-0,4	Signif.							0,000	0,001
F _{Kon,F}	Korrel.								1,000
0,4-0,315	Signif.								0,000

Tabelle A3-3: Bivariate Korrelation der Konkavitäten F_{Kon,F}

		F _{Kon,Ä}							
		2,5-2,0	2,0-1,6	1,6-1,0	1,0-0,71	0,71-0,63	0,63-0,5	0,5-0,4	0,4-0,315
F _{Kon,Ä}	Korrel.	1,000	0,869	0,969	0,904	0,855	0,837	0,770	0,615
2,5-2	Signif.	0,000	0,001	0,000	0,000	0,002	0,003	0,009	0,059
F _{Kon,Ä}	Korrel.		1,000	0,909	0,759	0,739	0,692	0,617	0,523
2,0-1,6	Signif.		0,000	0,000	0,011	0,015	0,026	0,058	0,121
F _{Kon,Ä}	Korrel.			1,000	0,910	0,863	0,841	0,755	0,598
1,6-1,0	Signif.			0,000	0,000	0,001	0,002	0,012	0,068
F _{Kon,Ä}	Korrel.				1,000	0,982	0,958	0,907	0,744
1,0-0,71	Signif.				0,000	0,000	0,000	0,000	0,014
F _{Kon,Ä}	Korrel.					1,000	0,979	0,956	0,834
0,71-0,63	Signif.					0,000	0,000	0,000	0,003
F _{Kon,Ä}	Korrel.						1,000	0,976	0,895
0,63-0,5	Signif.						0,000	0,000	0,000
F _{Kon,Ä}	Korrel.							1,000	0,933
0,5-0,4	Signif.							0,000	0,000
F _{Kon,Ä}	Korrel.								1,000
0,4-0,315	Signif.								0,000

		F _{Kon,F,1}	F _{Kon,F,2}	F _{Kon,F,3}
E	Korrelation	1,000	0,871	0,263
۲Kon,F,1	Signifikanz	0,000	0,001	0,462
E	Korrelation		1,000	0,549
۲Kon,F,2	Signifikanz		0,000	0,101
E	Korrelation			1,000
I Kon,F,3	Signifikanz			0,000

### Tabelle A3-5: Eingeschränkt kolineare Parameter F_{Kon,F,n}

#### Tabelle A3-6: Eingeschränkt kolineare Parameter FKon,Ä,n

		F _{Kon,Ä,1}	F _{Kon,Ä,2}	F _{Kon,Ä,3}	F _{Kon,Ä,4}
E	Korrelation	1,000	0,933	0,863	0,615
ГKon,Ä,1	Signifikanz	0,000	0,000	0,001	0,059
E	Korrelation		1,000	0,802	0,586
۲Kon,Â,2	Signifikanz		0,000	0,005	0,087
E. v.	Korrelation			1,000	0,851
I Kon,A,3	Signifikanz			0,000	0,002
E. v.	Korrelation				1,000
I Kon,A,4	Signifikanz				0,000

## Tabelle A3-7: Varianzanalyse zur Klärung des Einflusses der Gesteinsart auf die Konkavitäten

		Quadrat- summe	df	Mittel der Quadrate	F	Signfi- kanz
	Zwischen den Gesteinsarten	3,6E-04	1	3,6E-04		
F _{Kon,F,1}	Innerhalb den Gesteinsarten	8,35E-02	8	1,04E-02	0,034	0,857
	Gesamt	8,38E-02	9			
	Zwischen den Gesteinsarten	3,6E-04	1	3,6E-04		
F _{Kon,F,2}	Innerhalb den Gesteinsarten	1,56E-02	8	1,95E-03	0,184	0,679
	Gesamt	1,6E-02	9			
	Zwischen den Gesteinsarten	1,44E-03	1	1,44E-03		
F _{Kon,F,3}	Innerhalb den Gesteinsarten	5,4E-03	8	6,75E-04	2,133	0,182
	Gesamt	6,8E-03	9			
	Zwischen den Gesteinsarten	2,273E-03	1	2,273E-03		
F _{Kon,Ä,1}	Innerhalb den Gesteinsarten	8,771E-02	8	1,096E-02	0,207	0,661
	Gesamt	8,998E-02	9			
	Zwischen den Gesteinsarten	1,391E-03	1	1,391E-03		
F _{Kon,Ä,2}	Innerhalb den Gesteinsarten	3,401E-02	8	4,251E-03	0,327	0,583
	Gesamt	3,540E-02	9			
	Zwischen den Gesteinsarten	1,892E-03	1	1,892E-03		
F _{Kon,Ä,3}	Innerhalb den Gesteinsarten	8,777E-03	8	1,097E-03	1,724	0,226
	Gesamt	1,067E-02	9			
	Zwischen den Gesteinsarten	2,022E-03	1	2,022E-03		
F _{Kon,Ä,4}	Innerhalb den Gesteinsarten	1,590E-03	8	1,988E-04	10,174	0,013
	Gesamt	3,612E-03	9			

### Ergebnisse der statistischen Auswertung der Untersuchungsergebnisse

Eigen- schaft		Quadrat- summe	df	Mittel der Quadrate	F	Signifi- kanz
	Zwischen den Gesteinsarten	3,518	1	3,581		
H _{M,bit}	Innerhalb der Gesteinsarten	2,999	8	0,375	9,386	0,015
	Gesamt	6,516	9			
	Zwischen den Gesteinsarten	0,081	1	0,081		
ε ₁₀	Innerhalb der Gesteinsarten	91,148	8	11,394	0,007	0,935
AD	Gesamt	91,229	9			
Ŧ	Zwischen den Gesteinsarten	0,01	1	0,01		
€ _₩ *	Innerhalb der Gesteinsarten	0,34	8	0,042	0,237	0,64
AD	Gesamt	0,35	9			
	Zwischen den Gesteinsarten	8,836	1	8,836		
D-Wert	Innerhalb der Gesteinsarten	28,048	8	3,506	2,52	0,151
	Gesamt	36,884	9			
	Zwischen den Gesteinsarten	302,055	1	302,055		
SZA	Innerhalb der Gesteinsarten	384,134	8	48,017	6,291	0,036
AD	Gesamt	686,189	9			
	Zwischen den Gesteinsarten	0,07	1	0,07		
Stabilität	Innerhalb der Gesteinsarten	7,360	8	0,92	0,076	0,79
AD	Gesamt	7,430	9			
	Zwischen den Gesteinsarten	34,225	1	34,225		
Fließwert	Innerhalb der Gesteinsarten	110,00	8	13,75	2,489	0,153
	Gesamt	144,225	9			
	Zwischen den Gesteinsarten	1,766	1	1,766		
H _{M,bit}	Innerhalb der Gesteinsarten	0,802	8	0,1	17,61	0,003
JIIA	Gesamt	2,569	9			
	Zwischen den Gesteinsarten	2,116	1	2,116		
84 804 A	Innerhalb der Gesteinsarten	28,308	8	3,539	0,598	0,462
SIVIA	Gesamt	30,424	9			
	Zwischen den Gesteinsarten	0,048	1	0,048		
£ _W *	Innerhalb der Gesteinsarten	1,358	8	0,17	0,281	0,610
SIVIA	Gesamt	1,406	9			
	Zwischen den Gesteinsarten	0,01	1	0,01		1
D-Wert	Innerhalb der Gesteinsarten	10,424	8	1,303	0,077	0,789
JIVIA	Gesamt	10,524	9		1	
	Zwischen den Gesteinsarten	9,632	1	9,632		1
SZA	Innerhalb der Gesteinsarten	149,175	8	18,647	0,517	0,493
SIVIA	Gesamt	158,808	9		1	

# Tabelle A4: Einfaktionelle Varianzanalyse der AsphalteigenschaftenFaktor: Gesteinsart

Methode         Fs.F.1         Fs.F.2         Fkub.F.1           pho, Feret         0,004         0,726         0,726           mechanisch         0,004         0,948         0,948           wombiniert         0,004         0,948         0,948           pho, Feret         0,004         0,948         0,948           pho, Feret         0,003         0,948         0,936           pho, Feret         0,003         0,003         0,003           mechanisch         0,003         0,003         0,003           pho, Feret         0,003         0,003         0,003           mechanisch         0,003         0,003         0,003           pho, Feret         0,003         0,003         0,003           mechanisch         0,003         0,003         0,003           pho, Feret         0,034 <t< th=""><th>AB 0/11 S</th><th>Abh. Var.</th><th></th><th>H_{M,bit}</th><th><u> </u></th><th></th><th>E10</th><th><u> </u></th><th></th><th>۳* ۳*</th><th><u> </u></th><th></th><th>D-Wert</th><th></th><th></th><th>SZA</th><th><u> </u></th><th></th><th>Stabilität</th><th>1</th></t<>	AB 0/11 S	Abh. Var.		H _{M,bit}	<u> </u>		E10	<u> </u>		۳* ۳*	<u> </u>		D-Wert			SZA	<u> </u>		Stabilität	1
Fs,F,1         Fs,F,2         Fkub,F,1           0,726         0,004         6           0,004         0,726         0,948           0,726         0,004         0,948           10,003         0,003         0,003           10,003         0,003         0,003           10,003         0,003         0,003           10,003         0,003         0,003           10,003         0,003         0,003           10,003         0,003         0,003           0,003         0,003         0,003           0,003         0,003         0,003           0,003         0,003         0,003           0,003         0,003         0,003           0,003         0,003         0,003           0,003         0,003         0,003           0,003         0,003         0,003           0,003         0,003         0,003           1         0,003         0,003           1         0,003         0,003           1         0,003         0,003           1         0,003         0,003           1         0,003         0,003           1	Methode		pho, Feret	mechanisch	kombiniert	pho, Feret	mechanisch	kombiniert	pho, Feret	mechanisch	kombiniert	pho, Feret	mechanisch	kombiniert	pho, Feret	mechanisch	kombiniert	pho, Feret	mechanisch	
Fs.F.2         Fkub.F.1           0.726         0.004           0.726         0.004           0.726         0.948           0.726         0.948           0.726         0.948           0.003         0.033           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003           0.003         0.003		Fset																		
F kub,F,1 0,948 < 1°/00 0,003 0,003 0,003 0,003 0,003 0,014		Fse2	0,726 0,004		0,726 0,004							0,827 0,003		0,827 0,003	0,944 <1°/00		0,944 <1°/00			
		FKubel				0,948 < 1°/00		0,948 < 1°/00	0,836 0,003		0,836 0,003							-7,09 0,014		
	Standar	FKon F.1																7,787 0,09		
Standar Fkon,F,1 7,787 0,09	disierte K	FKON F.2																		
Standardisierte K.       Fkon.F.1     Fkon.F.2       7,787     0,09	oeffizienter	FKon F.3	2, 1,1021																	
Standardisierte     Kon,F,1     Fkon,F,3       Fkon,F,1     Fkon,F,3       Fkon,F,1     Fkon,F,3       7,787     0,09	1 und Signi	<b>RRSBn</b> F																		
Standardisierte         Kon,F,1         Fkon,F,3         RRSBnF           Fkon,F,1         Fkon,F,3         RRSBnF         Image: Standard Signature           Standardisierte         Standardisierte         Standardisierte         Image: Standard Signature           Standardisierte         Standardisierte         Standardisierte         Image: Standard Signature           Standardisierte         Standardisierte         Standardisierte         Image: Standard Signature           Standardisierte         Standardisierte         Standard Signature         Image: Standard Signature           Standardisierte         Standard Standard Signature         Standard Signature         Image: Standard Signature           Standardisierte         Standard Standard Signature         Standard St	fikanzen	D25/D75													0,287 0,021		0,287 0,021			
Standardisierte Koeffizienten und Signifikanzen           Fkon, F.1         Fkon, F.2         Fkon, F.3         RRSBn F         D25/D75-           Image: Standardisierten Standardisierten Standardisierten Standardisierten Standardischer Sta		FG																		
Standardisierte Koeffizienten und Signifikanzen           Fkon, F.1         Fkon, F.2         Fkon, F.3         RRSBns         D25/D75s         FGs           1         1         0.257         0.257         1         1         1           1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		Aĸw		0,585 0,004			0,94 <1°/00			0,789 0,007			0,551 0,073			0,701 <1°/00			0,683 0,029	
Standardisierte Koeffizienten und Signifikanzen           Fkon,F.J         Fkon,F.J         Fkon,F.J         RSBn         D25/D75r         FG         Atm           Ron,F.J         Fkon,F.J         Fkon,F.J         RSBn         D25/D75r         FG         Atm           Ron,F.J         Fkon,F.J         Fkon,F.J         RSBn         D25/D75r         FG         Atm           Ron,F.J         Fkon,F.J         Fkon,F.J         FKon,F.J         RSBn         0,004           Ron,F.J         P.S.         P.S.         P.S.         0,004         P.S.           P.S.         P.S.         P.S.         P.S.         0,004         P.S.           P.S.         P.S.         P.S.         P.S.         P.S.         P.S.		FZ																		
Standardisiente Kooffizienten und Signifikanzen           Fkon; i         Fkon; i         RKSBir         D25/D75         FGr         Ava         FZ           Kon; i         Fkon; i         RKSBir         D25/D75         0,585         0,004         PZ           I         I         I         I         I         I         I         I           I         I         I         I         I         I         I         I           I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I		Gestein	1,126 < 1°/00	0,638 0,002	1,126 < 1°/00								0,581 0,062			0,779 <1°/00				
Standardisierte Koeffizienten und Signifikanzen         Akan         FZ         Gestein           Fkonriz         Fkonriz         RSBnr         D25/D75r         FGr         136           1         0.004         0.003         0.002         0.003         0.002           1         0.004         0.004         0.002         0.002         0.002           1         0.004         0.004         0.002         1.106         1.106           1         0.004         0.004         0.002         0.002           1         0.004         0.004         0.002         1.106           1         0.004         0.007         0.002         1.106           1         0.007         0.007         0.007         0.002           1         0.007         0.007         0.007         0.002           1         0.007         0.007         0.007         0.002           1         0.007         0.007         0.007         0.002           1         0.007         0.007         0.007         0.002           1         0.007         0.007         0.002         0.002           1         0.007         0.007         0.002																				Т

Tabelle A5-1: Standardisierte Regressionskoeffizienten bei Asphaltbeton 0/11 S;  $\delta$  = d_F

### Ergebnisse der Regressionsanalysen

SMA 0/11 S	Methode		5			Standaı	rdisierte Ko	effizienten	und Signifil	anzen				
Abh. Var.		F _{S,F,1}	F _{S,F,2}	F _{Kub,F,1}	F _{Kub,F,2}	F _{Kon,F,1}	F _{Kon,F,2}	F _{Kon,F,3}	<b>RRSBn</b> _F	D25/D75 _F	FGF	Aĸw	FZ	Gestein
	pho, Feret		0,561 0,004											1,131 <1°/00
H _{M,bit}	mechanisch											0,405 0,03		0,762 0,001
	kombiniert		0,561 0,004											1,131 <1°/00
	pho, Feret		0,752 0,012											
54	mechanisch				Unter den	verwendeter	n Kriterien de	es Regressi	onsalgorithm	us nicht durch	ıführbar			
	kombiniert		0,752 0,012											
	pho, Feret		0,702 0,024											
£w*	mechanisch				Unter den	verwendeter	ר Kriterien d	es Regressi	onsalgorithm	us nicht durch	ıführbar			
	kombiniert		0,702 0,024											
	pho, Feret	0,938 <1°/00												
D-Wert	mechanisch											0,889 0,001		
	kombiniert	0,938 <1°/00												
	pho, Feret	0,927 <1°/00												
SZA	mechanisch											0,930 <1°/oo		
	kombiniert											0,930 <1°/00		

Tabelle A5-2: Standardisierte Regressionskoeffizienten bei Splittmastixasphalt 0/11 S;  $\delta$  = d_F

Tabelle At	5-3: Standard	isierte R	egress	ionskoe	ffiziente	ei bei A	sphaltbo	eton 0/1	1 S;	Ä				
AB 0/11 S	Methode					Standa	irdisierte K	oeffiziente	n und Signi	fikanzen			-	
Abh. Var.		Fs,ä,1	F _{S,Ä,2}	F _{Kub,Ä,1}	F _{Kub,Ä,2}	F _{Kon,} ä,1	F _{Kon,} Ä,2	F _{Kon,Ä,3}	RRSBn _Ä	D25/D75 _Ä	FGÄ	Aĸw	FZ	Gestein
	pho, Äqui	0,590 0,003												0,814 0,001
H _{M,bit}	mechanisch											0,585 0,004		
	kombiniert	0,590 0,003												0,814 0,001
	pho, Äqui						1,095 <1°/00	0,215 0,021	-0,158 0,034					
810	mechanisch											0,940 <1°/00		
	kombiniert						1,095 <1°/00	0,215 0,021	-0,158 0,034					
	pho, Äqui						0,728 0,002				0,468 0,019			
£w*	mechanisch											0,789 0,007		
	kombiniert											0,789 0,007		
	pho, Äqui			0,757 0,011										
D-Wert	mechanisch											0,581 0,073		
	kombiniert			0,757 0,011										
	pho, Äqui		0,890 0,001											
SZA	mechanisch											0,701 0,007		
	kombiniert		0,890 0,001											
	pho, Äqui				0,730 0,017									
Stabilität	mechanisch											0,683 0,029		
	kombiniert				0,730 0,017									

Tabelle A5-4: Standardisierte Regressionskoeffizienten bei Splittmastixasphalt 0/11 S;  $\delta$  = d $_{\ddot{A}}$ 

SMA 0/11 S	Methode					Standa	rdisierte K	oeffiziente	n und Sign	ifikanzen				
Abh. Var.		F _{S,Ä,1}	F _{S,Ä,2}	<b>F</b> _{Kub,Ä,1}	F _{Kub,Ä,2}	F _{Kon,Ä,1}	F _{Kon,Ä,2}	F _{Kon,Ä,3}	RRSBnä	D25/D75 _Å	FGÄ	A _{KM}	FZ	Gestein
	pho, Äqui				-0,772 0,001	1,098 <1°/00								0,745 <1°/00
H _{M,bit}	mechanisch											0,585 0,004		
	kombiniert				-0,772 0,001	1,098 <1°/00								0,745 <1°/00
	pho, Äqui	0,724 0,018												
54	mechanisch			_	Unter den v	erwendete	n Kriterien (	des Regres	sionsalgorit	hmus nicht dı	urchführt	bar		
	kombiniert	0,724 0,018												
	pho, Äqui	0,678 0,031												
εw*	mechanisch				Jnter den v	erwendete	n Kriterien	des Regres	sionsalgorit	hmus nicht dı	urchführt	oar		
	kombiniert	0,678 0,031												
	pho, Äqui	0,964 <1°/oo												
D-Wert	mechanisch											0,889 0,001		
	kombiniert	0,964 <1°/oo												
	pho, Äqui	0,900 <1°/00												0,368 0,039
SZA	mechanisch											0,930 <1°/00		
	kombiniert											0,930 <1°/00		

Tabelle A5-5	i: Ergebnisse	der Regressic	onsanalyse b∉	ei Asphaltbetor	n 0/11 S; δ = d _F			
AB 0/11 S		Anova		Konfidenzinte	rvall bei 95 %	Partielle	Korrelationsanaly	se
Abh. Var.		r	Sig T	min	тах	Var	<b>Var</b> _{Kontroll}	<b>r</b> partiell
	pho, Feret	0,956	<1°/00	F _{S,F,2} : 25,87	64,36	Fs F 2	Fkiih F1. G	0.63
H bit	mechanisch	0,934	0,001	A _{KM} : 0,972	3,363	1		
	kombiniert	0,956	<1°/00	F _{S,F,2} : 25,87	64,36	Fkub,F,1	F _{S,F,2} , G	0,34
	pho, Feret	0,976	<1°/00	F _{Kub,F,1} :31,2 F _{Kub,F,2} :0,8	47,2 53,2	F _{Kub,F,1}	F _{S,F,2}	0,91
6 <u>1</u> 0	mechanisch	0,94	<1°/00	A _{KM} : 9,2	16,9			
	kombiniert	0,976	<1°/00	F _{Kub,F,1} :31,2 F _{Kub,F,2} :0,8	47,2 53,2	Fs, _{F,2}	Fkub,F,1	0,31
	pho, Feret	0,836	0,003	F _{Kub,F,1} :10,0	32,8	ں <u>ب</u> لیا	Fse	0.80
£w*	mechanisch	0,789	0,007	A _{KM} :2,5	11,1			5
	kombiniert	0,836	0,003	F _{Kub,F,1} :10,0	32,8	F _{S,F,2}	$F_{Kub,F,1}$	0,27
	pho, Feret	0,827	0,003	F _{S,F,2} : 54,4	189,9	F _{c E 2}	Н К К Г Г Г	0.79
D-Wert	mechanisch	0,732	0,068	Акм: -0,6	10,3	2'1'O	- ' - ' nn' -	0
	kombiniert	0,827	0,003	F _{S,F,2} : 54,4	189,9	F _{Kub,F,1}	$F_{S,F,2}$	0,28
	pho, Feret	296'0	<1°/00	F _{S.F.2} : 455,0 D25/75 _F : 13,3	747,5 119,6	F _{S,F,2}	FKub,F,1	0,79
SZA	mechanisch	0,958	<1°/00	A _{KM} :16,8	36,5			
	kombiniert	0,967	<1°/00	F _{S.F.2} : 455,0 D25/75 _F : 13,3	747,5 119,6	Fkub,F,1	F _{S,F,2}	0,28
	pho, Feret	968'0	£00'0	F _{kon,F,1} , 24,5 F _{kub,F,1} : -144,7	122,1 -22,5	Fkon,F,1	$F_{S,F,1}$	0,8
Stabilität	mechanisch	0,683	0,029	Акм: 0,35	5,1			
	kombiniert	0,896	0,003	F _{Kon,F,1} : 24,5 F _{Kub,F,1} : -144,7	122,1 -22,5	Fs, _{F,1}	Fkon, F, 1	0,46

Tabelle A5-6	Ergebnisse	der Regre	ssionsanalys	e bei Splittmas	stixasphalt 0/1	l S; δ = d _F			
SMA 0/11 S		Anova		Konfidenzinte	ervall bei 95 %		Partielle Korrelatio	c	
Abh. Var.		-	Sig T	min	max	Var	Varkontroll	<b>r</b> partiell	
	pho, Feret	0,954	<1°/00	F _{S,F,2} : 9,531	34,204	$F_{S,F,2}$	F _{kub,F,1} , G	0,71	
H _{M,bit}	mechanisch	0,920	0,001	A _{KM} : 0,118	1,765				
						L		сс с	
	kombiniert	0,954	<1°/00	F _{S,F,2} : 9,531	34,204	FKub,F,1	РЅ,F,2, G	0,23	
	pho, Feret	0,752	0,012	F _{S,F,2} : 28,9	173,0	F _{S,F,2}	F _{Kub,} F,1	0,66	
54	mechanisch	Unter den v	verwendeten Kriteri dur	en des Regressionse chführbar	algorithmus nicht				
	kombiniert	0,752	0,012	F _{S,F,2} : 28,9	173,0	F kub, F, 1	F _{S,F,2}	0,09	
	pho, Feret	0,702	0,024	F _{S,F,1} : 3,518	37,0	F _{Kub,F,3}	F _{S,F,2}	0,33	
***** 8	mechanisch	Unter den v	verwendeten Kriteri	en des Regressionse rhführhar	algorithmus nicht				
			Inn	ciliuliual					
	kombiniert	0,702	0,024	F _{S,F,2} : 3,518	37,0	F _{S,F,2}	F _{Kub,F,3}	0,07	
	pho, Feret	0,938	<1°/00	F _{S,F,1} : 27,7	56,6	F _{S,F,1}	F _{Kub,} F,1	0,61	
D-Wert	mechanisch	688,0	0,001	A _{KM} : 2,4	5,9				
	kombiniert	0,938	<1°/00	F _{S,F,1} : 27,7	56,6	Fkub,F,1	F _{S,F,1}	0,09	
	pho, Feret	0,927	<1°/00	F _{S,F,1} : 101,8	202,5	F _{S,F,1}	F _{Kub,F,1}	0,38	
SZA	mechanisch	0,930	1°/00	A _{KM} : 11,5	22,5				
	kombiniert	0,930	1°/00	A _{KM} : 11,5	22,5	FKub,F,1	F _{S,F,1}	0,23	

I abelle A: AB 0/11 S	5-7: Ergeon:	SSE der Kegre Anova	ssionsanalys	e bel Aspnalto Konfidenzinte	eton U/11 S; ð irvall bei 95 %		Partielle Korrelatio	5
Abh. Var.		5	Sig T	min	max	Var	Var _k	Ľp
	pho, Äqui	0,939	0,001	F _{S,Ä,,1} : 10,9	35,1	ت د ل	E N M	0.58
				D25/75Å:-18,2	-7,7	- '4'0	NUD, A, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	5
H _{M, bit}	mecnaniscn	766,0	n,uuz	FZ: 5,3 F _{Kon,Ä.,1} : -29,1	18,7 -2,4			
	-		000	D25/75 _Å :-18,2	-7,7	F _{Kub,Ä,1}	F _{S,Ä,1} , M	0,17
	kombiniert	0,952	0,002	FZ: 5,3 F _{Kon.Ä.2} : -29,1	18,7 -2,4			
				F _{Kon,Ä,2} :47,7	63,5			
	pho, Aqui	0,992	<1 °/00	F _{kon,Ä,3} : -61,2 RRSB: -7,6	-7,2 -4,2	F _{Kon,Ä,2}	F _{S,Ä,1}	0,52
8 ₁₀	mechanisch	0,94	<1°/00	A _{KM} : 9,2	16,9			
	kombiniert	0,992	<1 °/00	F _{Kon,Ä,1} :47,7 F _{Kon,Ä,2} : -61,2 RRSR ⁻ -7 6	63,5 -7,2 -0 42	Fs,ă,1	Fkon,Ä.2	0,39
	pho, Äqui	0,914	0,002	F _{Kon.Ä,1} : 11,4 FG: 0,6	34,4 5,1	Fkon,Ä,2	F _{S,Ä,1}	0,64
°**	mechanisch	0,789	0,007	A _{KM} :2,5	11,1			
	kombiniert	0,914	0,002	F _{Kon,Ä,1} : 11,4 FG: 0,6	34,4 5,1	Fs,ă,1	Fkon,Ä,2	0,40
	pho, Äqui	0,757	0,011	F _{Kub,Ä,1} : 5,0	28,6	F _{Kub,Ä,1}	F _{S,Ä,1}	0,38
D-Wert	mechanisch	0,732	0,068	A _{KM} : -0,6	10,3			
	kombiniert	0,757	0,011	F _{Kub,Ä,1} : 5,0	28,6	F _{S,Ä,1}	F _{Kub,} Ä,1	0,04
	pho, Äqui	0,89	0,001	F _{S,Ä,2} : 416,4	1005,1	F _{SÅ2}	F Kon Ä.2	0,67
SZA	mechanisch	0,958	<1°/00	A _{KM} :16,8	36,5			
	kombiniert	0,89	0,001	F _{S,Ä,2} : 416,4	1005,1	F _{Kub,Ä,2}	F _{S,Ä,2}	0,23
	pho, Äqui	0,73	0,017	F _{Kub,Ä,2} : 5,0	37,6	F _{Kub.Ä.3}	F _{Kon.Ä.2}	0,42
Stabilität	mechanisch	0,683	0,029	A _{KM} : 0,35	5,1			
	kombiniert	0,73	0,017	F _{Kub,Ä,2} : 5,0	37,6	F _{Kon,Ä,2}	F _{Kub,} Ä,3	0,15

Tabelle A5-	-8: Ergebni:	sse der Regre	ssionsanalys	e bei Splittmas	stixasphalt 0/1	l S;		
SINA U/1 S		Anova	F		Prvali del 95 %	Me-		,
Abn. Var.	, žeči žeči	<b>-</b>	<b>Sig I</b>	<b>ти</b> F _{Kub,Ä,2} : -18,5	<b>max</b> -7,9	Var	Varkontroll	<b>r</b> partiell
				F _{Kon,Ä,1} : 4,3	7,4	F _{S,Ä,1}	Е _{Кub,ä,2} ,	0,43
H _{M,bit}	mechanisch	0,920	0,001	A _{KM} : 0,118	1,765			
	kombiniert	0,991	<1°/00	F _{Kub,Ä,2} : -18,5 F _{Kon,Ä,1} : 4,3	-7,9 7,4	F _{Kub,Ä,2}	F _{S,Ä,1}	0,48
	pho, Äqui	0,724	0,018	F _{S,Ä,1} : 13,6	108,2	F _{S,Å,1}	Fkon, Ä, 1	0,53
5	mechanisch	Unter den verwe	ndeten Kriterien de	s Regressionsalgorit hrbar	hmus nicht durch-			
	kombiniert	0,724	0,018	F _{S,Ä,1} : 13,6	108,2	Fkon,Ä,1	F _{S,Ä,1}	0,35
	pho, Äqui	0,678	0,062	F _{S,Ä,1} : 1,4	23,1	F _{S,Ä,1}	F Kon, Ä, 1	0,41
** 8	mechanisch	Unter den verwe	ndeten Kriterien de: frit	s Regressionsalgorit	hmus nicht durch-			
	kombiniert	0,881	0,005	F _{S,Ä,1} : 8,64 FZ: -10,8	25,6 -1,5	F _{Kon,Ä,1}	F _{S,Ä,1}	0,23
	pho, Äqui	0,964	<1°/00	F _{S,Ä,1} : 37,0	58,4	F _{SÅ.1}	F _{Kon Ä.1}	0,85
D-Wert	mechanisch	0,889	0,001	A _{KM} : 2,4	5,9		- -	
	kombiniert	0,964	<1°/00	F _{S,Ä,1} : 37,0	58,4	F _{Kon,Ä,1}	F _{S,Ä,1}	0,56
	pho, Äqui	0,925	0,001	F _{S,Ä,1} : 107,0	239,0	F _{S,Ä,1}	Fkub,Ä,1	0,38
SZA	mechanisch	0,930	<1°/00	A _{KM} : 11,5	22,5			
	kombiniert	0,930	<1°/00	Акм: 11,5	22,5	Fkub,Ä,1	Fs,Ä,1	0,23